指导教师:_____杨涛_____

提交时间: _____2015.3.28__

The task of Digital Image Processing

数字图像处理

School of Computer Science

贝叶斯视图合成和基于图像的绘制原则

摘要

在本文中,我们致力于解决关于从一组输入 图像中如何综合出新颖视图的方法问题。一 些最先进的方法,例如非结构化的卢米图, 已经使用了启发式信息来结合原有的图像, 它们经常利用了场景的几何形状的显式或 隐式的近似值。同时已经提出了的启发式方 法已经在很大程度上被探索和证明以至于 让工作更加有效率,最近推出的贝叶斯猜 想,让一些先前提出的启发式算法更加规范 化,指出了其中的物理现象可能恰恰藏在这 些图像之后。然而,一些重要的启发性问题 还没有被带入考虑并且缺乏合适的规范化。 我们提供了一个全新的基于物理的生产模 式和与其相适应的最大后验概率的估计,提 供以启发式为基础的方法和贝叶斯公式之 间所需的统一。关键的一点是要系统地考虑 由几何代理的不确定性所引起的错误。我们 提供了一个广泛的讨论,分析所得到的方程 式怎样来解释启发式在以前的方法中的发 展。此外,我们表明我们的新型的贝叶斯模 型显著提高了新的视图的质量,特别是当场 景几何估计是不准确的时候。

1.简介

我们解决新的视图合成的问题是基于图像 呈现的领域(简称 IBR),目的是利用一系 列任意搭配的输入图像,从不同的观点中综 合出新的观点。大部分最先进的方法都是运 用启发式的状态的方法来定义能量或目标 功能最小化,实现了优异的成绩。在 IBR 一 个重大突破是 Buehler 等人的鼓舞人心的工 作。他们定义的"理想性能"任何 IBR 算法 应该有。这些指令仍然在当前最先进的方法 中占据优势。

图 1:沿相机 Vi 的射线光的深度分布将不同 地传播,具体取决于呈现相机 u 或 u' 的视角,该角度越大,预计的不确定性就越 大。

然而,最近,对贝叶斯形式主义的使用在 IBR 的技术已被引入,就在 Wanner 和 Goldluecke 提出的工作里。他们为新颖视图 的合成提供了第一贝叶斯框架,利用一个基 于物理学的生成模型描述图像形成过程,并 取得其最大后验(MAP)估计。此外,它们 的变分方法不仅解决新视图合成的问题。它 直接解决新的超分辨图像的合成,并提供给 其他相关的问题,即图像去噪或图像去模糊 一个坚实的框架。

有趣的是,虽然[4]和[28]已经解决了同样的问题,他们的理论结果不收敛成一个统一的框架。一方面,由 Buehler 等人在[4]中提出的口授的准则已经证明是非常有效的,但缺乏一个正规推理来支撑它们。此外,目前还不清楚应如何处理一些理想的性质之间的平衡。一个说明性的例子是极点一致性及分辨率灵敏度之间的折衷。前者指出,"当期

望的光线通过源照相机的投影中心时可以 细微地修复",而后者指出,"在现实中, 图像像素不是单个射线真正的单位,而是对 着一个小的立体角的一组光线的集合。这个 角度范围应由理想的呈现算法来解释。"该 极点一致性与角度偏差期有关联,而分辨率 灵敏度是由有关的雅各比平面单列矩阵导 出。这两种启发式方法似乎都是合理的,但 谁应该占主导地位呢?属性之间的权重选 择是由用户调谐,同时在他们的实验中,参 数必须由不同场景做出不同调整。

图 2: 视线 D 是从摄像头 Ci 通过使用[28] 产生的。左:

由于透视效果的作用,相机 C2 将比相机 C1 更受到青睐。然而,D和 C1 之间观看的光 线角距离是比 D和 C2 之间小得多。右:配 置了一个水平台面。所有摄像机将具有相同 贡献,尽管有不同的视角。

另一方面,现有的贝叶斯模型[28]是能够解 释一些启发式方法的,但仍然违反了那些, 似乎明显并且已被证明有效的方法。例如, 我们在能源中的场景几何发现了一个分析 推演的透视效果的影响。调查结果在[4]中证 实了由 Buehler 等人所提出的启发式:正是 雅可比变换的推导与视野有关。然而,当仔 细分析在[28]中的最后的方程,一个在[4]中 提出的重要的期望

特性,至今下落不明:视线的最小角度偏差 并不执行此特性,甚至在某些情况下违反, 如图2所示。

最新技术的生产模型和被普遍接受的启发 式方法提出的能量之间的区别是什么促使 了现在的工作。我们的目标是保留从贝叶斯 形式主义所产生的固有的无参数能的优点,同时推动了[28]的图像形成模型的界限,并 提供一个新的模型,其能够解释在 IBR 中大 部分目前公认的在本领域中最先进的直觉。

作用:这个所提出的方法的核心理论 贡献就是通过几何代理估计误差的郎 伯图像合成工序里的错误的系统模型 化。我们把这个误差叫做深度不确定, 由输入图像的深度估计得到。除了这 个错误以外,我们也按照普遍的高斯 建模思考这个图像传感干扰。我们广 泛地分析获得的能量的理论含义,同 时讨论我们建模中最先进的启发式方 法的形式推理。这项工作明确地为第 一贝叶斯构想导出了[4]的启发法。 从具体实际的角度来说,我们通过和 采用贝叶斯体系的最优存在法进行对 比,在数字方面评估了我们方法的性 能。实验数据表明,关于大众数据的 客观度量,我们完成了最新的数据。 此外,我们也能处理超分辨率,利用 [28]中建立的体系结构。这个新的模 型并不是不需要任何代价,因为他的 最优法并不直观。然而,现有的方法 能让我们去客服困难。公开的源代码 可在此网站获得: http: //sf.net/projects/cocolib/.

2. 相关工作

自从 McMillan 和 Bishop 在全景模型[14]中 做出了早期工作后,许多 IBR 的技术都因为 某些目的得到了发展,例如,自由视点呈现 [24],图像变形[30]或图像视图插补[21]。由 Shum 等人[19]做的分类表明许多 IBR 方法 使用了一个几何代理,并且他们做了一个 IBR 连续性的分类,分类方法取决于他们用 了多少几何。在一个连续的一端,我们有一 些方法,并不用什么东西,只需收集大量的 输入图像,例如光场呈现[13],同心交织图 案[20]。在相反的另一端,我们将呈现技术 依赖于直观的几何,使用精确的几何模型但 很少的图像,例如深层图像[17,6]和依靠视 觉的手感绘图[9]。在这其中,我们通过使用 一个几何的内在描述找到了一些方法,例如 依赖光电流的视图插补技术[7,27],使用极 几何沿视线建立连接的传送方法[12],还有 卢米图[11],使用了大致明确的几何学和相 对大量的图像。

当 Buehler 等人引进非结构化卢米图呈现时 [4],他们建立的七个"理想属性",所有的 IBR 方法都应该符合:几何代理的使用,非 结构化的输入,极点的一致性,最小角度偏 差,连续性,分辨率灵敏度,相当于光一致 性和实时性。这项工作一直在社会上非常重 要,大多数 IBR 方法也是遵循这些原则。

虽然贝叶斯形式主义是一种常见的方式去 处理空间的超分辨率在多视点以及轻现场 设置[3,10],他们最近才因为华纳和 Goldluecke[28]的工作而被运用到IBR。虽然 他们的工作为分辨率灵敏度特性提供了一 个物理解释,最小角度偏差也可以在最后的 方程中使用。最有趣的是,Vangorp等人[26] 试验检验这些IBR 方法的属性很容易创造 视觉假象,并他们的主要成果之一是把识别 角度偏差作为重点属性来加以考虑,以避免 视觉假影。

即使通过现有最先进的 3D 重建技术在估算 几何代理方面也是惊人的,考虑到他们是完 美的,似乎是一个强大的假设:即使是最好 的方法在最后的估计中有不确定性。当然, 新的观点合成容易因为一个差的(隐性或显 性)重建而在某些区域产生视觉假象。其中 一个解决这个问题的方法就是提高采集设 置,由 Zitnicket 等人完成[31]。他们实现一 个足够好的重建,促进了令人印象深刻的新 观点的合成。然而,他们的设置在很大程度 上被制约。

在[22]中,当从 2 个图像中呈现一个新的视 角时,Takahashi 在几何代理呈现中研究误 差的理论影响。我们通过解决照相机的配置 加强了[22],并提供一种有效的方法来找到 解决方案,都明确地留作今后的工作。在[23 中,]Takahashi 和 Naemura 使用深度的不确 定性的信息来影响正则项(前)。但是,这 个想法确实还没有考虑到最小角偏差,因为 每个摄像头不允许有不同的贡献量。我们在 这项工作中解决这个问题。

3.新型视图综合生成模型

我们的目标是从一个新的视点 c 合成一个 (可能是超分辨率)图像 U: $\Gamma \rightarrow R$,使用 一组从任一点 ci 抓获的图片 Vi: $\Omega i \rightarrow R$ 。 我们假设我们有一个几何代理的估计,其中 足以建立视图之间的对应关系。更正式地 说,这个几何代理包含一个向后的变形标记 $\tau i:\Omega i \rightarrow \Gamma$,从每个输入图像到新的视点, 以及二进制闭塞掩码 mi: $\Omega i \rightarrow \{0,1\}$,它选 择最有价值的点当且仅当 Ωi 中的点在 Γ 中可视。如果我们限制 τi 到设定的可见点 Vi $\subset \Omega i$,它是单射并且它的左逆 β I: τi (Vi) $\rightarrow \Omega i$ 被很好地定义,见图 3。

图 3 从图像平面 Ω_i .转移 τ_i 到目标图像平面 Γ_o 深度不确定性 σ_z 可能在像素点间不同。

理想的成像模式。为了考虑从超分辨率新视 图输入新视图的分辨率损失,我们通过在 VI 的图像形成过程中应用模糊内核中的 b 模拟二次抽样过程。它对应于摄像机 i 的点 扩散函数 (PSF)。vi 的各像素从来自场景的 光线的集合存储积分强度,并且这个新的点 u 将总被认为比输入的图像有更高的分辨 率。

我们暂时抛开可视度的效果,假设所有点都可见。还假设我们有一个完美的向后的伸缩

映射 τ i*, 从 Ω i to Γ, 也有一个完善的输入 影像 Vi*。假设朗伯成像模型, 新视图和输 入视图之间的理想化确切的关系是

$$v_i^* = b * (u \circ \tau_i^*), \quad (1)$$

存在关系。的函数组合操作。然而,该观察 到的图像 vi 和几何 τ i 是不完美的,而我们 需要考虑这些因素的成像模型。

传感器误差和图像错误。首先,我们考虑用 方差 o s2 在所有摄像机上用高斯传感器噪 声,而传感器噪声方差 o s2 和二次取样内核 B 可能是图像之间不同,为符号的简单起 见,我们将假定它们是相同的。

$$\sigma_{g_i} = \sigma_{z_i} \left| b * \frac{\partial (u \circ \tau_i)}{\partial z_i} \right| = \sigma_{z_i} \left| b * \left((\nabla u \circ \tau_i) \cdot \frac{\partial \tau_i}{\partial z_i} \right) \right|$$

其次,我们认为错误在几何估计,这意味着 相应的向后伸缩τi是与理想的映射τ*不 同。这在图像形成过程中包含一个强度错误 egi,

$$\epsilon_{g_i} = b * (u \circ \tau_i^*) - b * (u \circ \tau_i)$$
⁽²⁾

有关强度的错误的不确定性egi表示为σgi: Ωi→R。需要注意的是都具有强度单位。

考虑到上述错误,图像形成模型变为:
$$v_i = b * (u \circ \tau_i) + \epsilon_{g_i} + \epsilon_s$$

109

虽然我们做出了共同的假设,即 es 遵循高 斯分布, egi 的分布对于我们是未知的。我 们知道是 egi 是与几何误差密切相关的。在 下一节中,我们研究他们分布之间的关系。

图像误差对几何误差的依赖。该几何代理为 每个在Ωi的像素 x 产出一个深度检验 zi, 其与不确定性σzi关联,给了我们一个沿着 视线的深度分布,如图 3。我们现在考虑几 何代理的估计的错误 ezi,用世界单位表示。 以前的图像错误 egi 是依赖于底层的几何误 差。注意,图像误差具有强度单位不得与有 几何单位的 ezi 混淆。与此相反的模糊核和 传感器噪声,我们允许这些不同错误的存 在,是对于每个视图,并为每个视图的不同 像素,如让符号更加详细。

我们假设,对于深度估算的误差分布是正常 的, $\epsilon_{z_i} \sim \mathcal{N}(0, \sigma_{z_i}^2)$ 。现在的目标是 导出这个分布如何生成在图像形成处理的 颜色误差分布。传播具有任意功能的分布并 不简单,即使如果在我们的情况下,该深度 误差分布被假定为高斯,并且将仅沿着该视 图之间的几何形状来传播。相比于计算沿着 视线的全色分布,我们线性化考虑 vi 到 ZI 的一阶泰勒展开式的。这意味着,所得到的 颜色分布也是高斯,平均 u。τ i 和标准偏差

$$\sigma_{g_i} = \sigma_{z_i} \left| \frac{\partial v_i}{\partial z_i} \right|. \tag{4}$$

运用式子(1)。连锁规则,我们发现

$$\sigma_{g_i} = \sigma_{z_i} \left| b * \frac{\partial (u \circ \tau_i)}{\partial z_i} \right| = \sigma_{z_i} \left| b * \left((\nabla u \circ \tau_i) \cdot \frac{\partial \tau_i}{\partial z_i} \right) \right|.$$
(5)

MAP 估计和能量。在贝叶斯法则中,新视图的 MAP 估计可以发现,因为图像ü使能量最小化

 $E(u) = E_{data}(u) + \lambda E_{prior}(u)$, (6) 其中数据术语 EDATA (U)可从生成模型推 导出,并且 Eprior (u 作为一个平滑项,随 后详细介绍。 我们方法里 $\lambda > 0$ 是唯一的参 数,并且它控制该结果的平滑度。

让我们考虑两个误差源为独立的,外加的和 高斯的。然后它们的和也是正态分布具有零

均值和方差 $\sigma_s^2 + \sigma_{g_i}^2$ ・这个数据从式 (3) 的生成模型计算 由下式给出:

$$u) = \sum_{i=1}^{n} \frac{1}{2} \int_{\Omega_i} \omega_i(u) \, m_i(b \, \ast \, (u \circ \tau_i) - v_i)^2 \, dx, \quad (7)$$

和

 $\omega_i(u) = \left(\sigma_s^2 + \sigma_{g_i}^2\right)^{-1} \quad (8)$

该数据项是一个类似于在先前[28]的模型中 发现的那个,除了因子ωi(U),它可以看 作是取决于对深度的不确定性和潜在图像 U的量来计算。如果没有深度的不确定性,

这个项就会降低至 σ_s^2 ,这恰好给出在[28]

中找到的能量。

从公式(5)中,我们可以观察到如果向量 $\partial \tau i/\partial zi$ 的长度减小,在 ω i中的术语 $\sigma_{g_{1}}^{2}$ 也在变小。 $\partial \tau i/\partial zi$ 表示当其深度 zi (xi) 变化时,从原来的图 VI中的点 xi 在新图 u 的投影变化量。这个向量点朝向 vi 上的点 xi 发出的极线的方向,其幅度减小与来自新 视图 u 和从原始视图 vi 发出的光射线之间 的角度有关。如图 1 表示,术语 $\sigma_{g_{2}}^{2}$ 因而解 释了[4]中极小的角度偏差"理想的属性", 它未解释[28]中的原因。 让我们来更精确地分析在何种情况下的权 重 ω i (U)达到其最大值 $1/\sigma_{s}^{2}$,这是在

里 ωI (U) 达到兵取入值 , 这是在 以前的模型中找到的值。发生这种情况有三 种可能。第一个是,如果 ∂ τ i/ ∂ zi=0,即 在 vi 中某点的深度对它再投影到ü没有影 响。这只能发生在两个光射线是相同的情况 下,其对应于[4]中

的极点一致性特征。第二个是如果又u=0, 即呈现图像在所考虑的点不具有梯度或纹 理:在此情况下,在深度估计上的错误对呈 现视图没有影响。最后的情况是,如果又u 在呈现点正交于从摄像机 I 穿过极线的方向 呈现点:摄像机 I 的深度估计中的一个小错 误不会对呈现视图有影响,因为这种错误影 响的方向相切一个轮廓。

选择先验。这个最优的方法在贝叶斯方法中 引入来抑制对象图像潜在的配置。通常,它 被用来克服不适定性的问题:在 Baker 和 Kanade[1]的超分辨率分析中,它们表明矩阵 系统的零空间的维数随超分辨率因子的增 加而增加。此外,在新的视图合成中,图像 的某些部分可能不被任何贡献视图看出,因 此一个正规化允许以合理的的信息填补差 距。因此,现有的选择将对最终结果有显著 的影响。

为了克服在超分辨率[18]的具体问题,非常 有趣的先验已经开始开发了。同时,也有让 从图像的集合[16]中学习通用图像先验的方 法。然而,在这项工作中,我们重点在生成 模型,我们使用基本的总变化作为一个正则 化,

$$E_{\rm prior}(u) = \int_{\Gamma} |Du|, \qquad (9)$$

这是凸面的,并在图像分析的问题[5]的文章 中已被广泛地研究了。寻找最佳先验将是未 来工作的一个主题。

最优化。公式(6)中的结果很难得到最优 因为 ω i(u)在公式(7)中的影响是在潜在图 像 u 中的非线性结构。与[8]类似,我们提出 了重新加权迭代方法。我们使用 U 的估算, 在 第 一 次 迭 代 中 设 $\tilde{u} = \frac{1}{n} \sum v_i \circ \beta_i$ 我们认为, ω i (~u)的每次迭代期间恒定,使得简化能 量得以突出。此外,与[28]类似的争论,我 们可以证明功能衍生简化数据项是

 $dE^{i}_{\text{data}}(u) = \omega_{i}(\tilde{u}) \left| \det D\beta_{i} \right| \left(m_{i}\bar{b} * (b*(u \circ \tau_{i}) - v_{i}) \right) \circ \beta_{i}$ (10)

在那里 $\bar{b}(x) = b(-x)$ 是共轭核心。它的功能导数是李普希茨连续的,其允许经由快速迭代收缩和阈值算法(FISTA)[2]进行能量最小化。有了这个简单问题的解决方案,我们更新U,从而获得新的权重,和新的能量。我们再用 FISTA 解决它并且迭代。虽然在每次迭代中解决最小化问题是中凸的,一般情况我们也不能希望找到式(6)的全局最小值。

4.IBR 法则的联系

正如我们在公式(10)中看到的,对于每个 视图加权因子都来自于两个方面。术语|detD βi|和[28]中的是相同的,并且对应于图像的 变形的量度:它是一个象素的表面从 u 投射 至 vi。我们可以制定出它背后的意义:当视 点改变时,观测的场景改变了多少? 术语ωi(u)对应于深度不确定性,正如在 上一节中进行了说明。它背后的含义就是: 当观测的深度改变时,观测的场景改变了多 少?

现在让我们认真地建立的提出的能源与[4] 中 IBR 的"理想的特性"之间的联系。

利用几何代理和非结构化的输入。几何代理 经由向后伸缩映射并入τi,输入可以是非 结构化(即通用位置的随机的一组图像)。

极点一致性。如先前的解释,只要该光线从 xi发出并且 X 是相同的,加权因子ωi(u) 为最大,因此,如果照相机在 x 具有极点, 则这款相机在 x,通过ωi(U)的贡献就能 较高。极点一致性因此满足。

最小角度偏差。从方程(5)的σgi提供此 启发式:如果保持所有其他方面不变(分辨 率,到现场的距离等),然后方程(5)载体 ∂τi/∂zi的幅度是完全成比例的角度,这 个角度是从这两款相机的可见光射线到同 一场景点之间。

分辨率灵敏度。此启发式由项|detDβi得来 |,它测量一个从Ü投影到vi的像素的表面。 我的相机的分辨率越大,这个表面也就越 大,使分辨率的灵敏度得到妥善处理。

等价射线的一致性。"通过空间的任何空 区域中,射线沿给定视线的应始终重建,不 论视点位置(除非由其他目标规定...)"[4]。 通过我们的框架,只是细微地感到满意,因 为权重是根据相机参数连续地变化(通过向 后伸缩映射τi的连续变化)。沿着光射线移 动新视图摄像机(这是在[4]中用于描述该属 性的情况)仅仅是一个特殊的情况。

连续性。IBR 中的连续性原则要求最终呈现 图像连续地具有不同于原来视图的相机参 数。这意味着照相机之间不存在接缝处之间 的可见性的边界,其可以发生在靠近视图中 的场景中每个摄像机的视场的交叉点的边 界,或在每个摄像机看到的深度不连续。典 型的启发式去执行这种形式的连续性是在 附近的可见性边界或其视场的边界[15, 4] 降低一个摄像头的贡献率。

我们的方程式并不符合该属性,并且所获得的权重不降到零当接近可视边界的时候。这可能

轻松地被强制执行,通过使靠近深度的可视 地图和可视不连续性平滑化,在不改变这些 函数的零集的情况下。但是,由于我们宣称 拥有一个完全基于物理的贝叶斯公式,可视 地图上的任何操作应有一个物理解释来确 定,这方面我们仍然很迷失,而这是我们今 后工作的一部分。

需要注意的是,在能量中的最优术语减少了 这些问题,尤其在视觉伪像中,这是由于没 有妥善处理连续性。然而,现有的新观点并 不能完全解决连续性问题,这取决于场景和 相机几何。

实时性。最后的"理想的属性",是为了实现实时性。目前我们的方法还没有实时的, 主要是由于 MAP 估计的计算复杂:从8个 源图像中呈现出一768×768 的图像,2到3 秒是必要的。然而,无论是分辨率的算法和 硬件体系结构都发展的很快,可以预计在未 来的几年也会有更好的表现。

如果超分辨率并不重要,不是解决全图的问题,当使用实时正规化修补方法的形式来获得可接受的结果时,它似乎是合理的。

性能之间的平衡。关于[4],我们方法的优点 之一是不同特性之间的平衡不是由用户定 义的参数来处理,而是从一个形式上推理暗 示。想象一下,有两个摄像头的配置:一个 配有低最小角距离但是高分辨率灵敏度变 化,另一个配有高最小角距离但是低分辨率 灵敏度变化。究竟哪一个会对最终的图像影 响更大呢?在[4]中,角距离因分辨率灵敏度 的比率 1/0.05=20

(走廊数据集)而优选。在我们的公式中, 这些变化是完全基于物理的。 图像之间的

 $\Delta \alpha$ 的角度偏差按比例变化至 $\sin^2 \Delta \alpha$,

基于^{**0**_g, 的变化。一个透视效果或分辨率的 差异引起的图像比例因子是按比例变化至}

 $\frac{1}{s^2}$,基于 $|\det D\beta|$ 的变化。这些因素之间的 平衡被适当地处理,通过考虑传感器噪声 σ_s^2 .

一个例外是权重因子 λ,在现有术语中使 用。注意,这是基于贝叶斯原理的图像分析 的所有工作的共同之处:因为目前还没有有 意义的方式来获得图像空间中的先验分布, 需要用客观先验来进行正规化工作。当然, 你也可以使用现有的方法[16],允许直接从 输入图像估计这个现有的东西,从而获得完 全无参数的模型。

5.实验

简化的摄像头配置。虽然我们正在处理一般 情况下的新视图的合成,为了简化最优化过 程的执行,在实验中,我们假设我们的相机 具有一个简化的配置。具体来说,所有的视 点都在一个共同的平面,该平面平行于所有 图像平面,也就是说,我们正在卢米图 参数[11]中处理一个 4D 光场。新视图也合

成在相同的图像平面上,这意味着, τi是 简单地给出,通过正比于归一化差异 di 的

变换, $\tau_i(x) = x + d_i(x)(c - c_i).$

(11)

标准化的差距体现在每个像素单元,并且连 同与其相关联的不确定性,又与深度相关, 通过:

$$d_i(x) = \frac{f_i}{z_i(x)} \sigma_{d_i}(x) = \sigma_{z_i}(x) \frac{f_i}{z_i(x)^2}$$

(12), 其中 fi 是体现在像素中的摄像头焦 点长度。

将(12)和(11)代入(5),我们得出了几 何误差及其相关联的图像误差之间的联系:

 $\sigma_{g_i} = \sigma_{d_i} | (b * ((\nabla u \circ \tau_i) \cdot (c - c_i)))|, (13),$

其中 σ di 表征噪音差异。最后,公式 (10) 中的变形术语是: $|\det D\beta_i| = |\det D\tau_i|^{-1} = |1 + \nabla d_i \cdot (c - c_i)|^{-1}.$ (14)

数据集。为了验证该理论的贡献,我们比较两个光场数据集的结果:在HCI光场数据库 [29],以及斯坦福大学光场存档[25]。这些数据集提供了一个广泛的集合,它们是挑战 性的合成和真实世界的场景。

在第一组实验中,我们以相同的分辨率呈现

数据集中现有视图,而无需使用各自的视点 作为算法的输入。我们考虑几何代理的两个 不同的特质:来自估计的视差映射的近似 值,以及

一个由场景预估中心的一个无限正面平行 的平面表示的极小值。我们因此适应σdi, 也就是在使用估计的视差时,我们使用一个 对应于重建方法的预期精确度的值:

 $\sigma_{d_i} = \frac{d_{\max} - d_{\min}}{\text{nbLayers}}, \text{其中 nbLayers 是}$ 由该方法考虑的数目差值。当裸平面在场景 的 中 部 被 使 用 时 , 我 们 改 用 $\sigma_{d_i} = \frac{d_{\max} - d_{\min}}{4}.$ 在所有的情况 下, $\sigma_{s=1/255}$ 。

第二组实验是进行呈现一个取自一组5×5 输入图像中的3×3超分辨的图像。虽然超 分辨率还不是文章中的主要目的,我们还提 供与现有技术的状态的比较。因为超分辨率 依赖于子像素的差异值,我们只显示包含估 计的视差地图的结果。

在表1中,我们展示我们方法中获得的数值 结果,并将它与[28]取得的成果相比较。我 们测量实际的和生成的图像之间的PSNR和 DSSIM。虽然我们的方法看起来表现地很 好,但数值应要仔细解释。在图4中,我们 展示了详细的特写来说明这些好处或者我 们的方法。因为对于大多数数据集来说高分 辨率图像是不可得的,超分辨图像的PSNR 和 DSSIM 值通过输入图像来计算,生成新 的超分辨视图并且将它与原来的相比较。

当呈现精确的几何图形时,这两种方法大致 与 PSNR 和 DSSIM 的值相当(表1中的第 一和最后两行)。当代理的质量下降时(表1 的第三和第四行),我们的方法明显优于以 往的工作,就是利用深度不确定性的显式建 模。如在图4的图中所示,我们在所有的配 置方法中更好地重新构建颜色边缘。全分辨 率图像在补充材料中提供。

当呈现8幅输入图像的目标分辨率时的计算

时间大致为2到3秒。超分辨率视图合成, 采用的是3×3和24幅输入图像, 它的计算

时间约是2至3分钟。所有的实验中使用了 nVidia GTX Titan GPU。

	HCI light fields, raytraced				HCI light fields, gantry				Stanford light fields, gantry					
	still life		buddha		maria		couple		truck		gum nuts		farot	
Estimated disparity Wanner et al. [11] Proposed	30.13 30.45	58 55	42.84 42.37	17 18	40.06	53 53	26.55 28.50	226 178	33.75 33.78	408 407	31.82 31.93	1439 1437	28.71 28.88	60 58
Planar disparity Wanner et al. [11] Proposed	21.28 22.24	430 380	34.28 37.51	74 44	31.65 34.38	144 99	20.07 22.88	725 457	32.48 33.79	419 386	30.55 31.30	1403 1378	22.64 23.78	278 218
Super-resolution Wanner et al. [20] Proposed	24.93 25.12	230 228	34.50 34.44	122 123	35.18 35.20	129 129	25.54 25.34	287 289	33.11 33.08	378 379	31.80 31.89	1475 1471	26.66 26.54	113 117

表 1: 两个网上不同的档案中的合成和真实世界的光场数值模拟结果。我们将我们的方法与 华纳和 Goldluecke[28]比较,关于估计差值的相同分辨率视图合成的和平面代理,以及超分 辨视图合成。对于每一个光场,第一个值是峰值信噪比(越大越好),所述第二值是以¹⁰⁻⁴ 为单位的 DSSIM 值(越小越好)。更优值由粗体突出显示。实验的详细说明见文章。

图 4.不同的光场下的新视图的视觉比较。从上到下,每行表现出真实图像的特写,由[28]中获得的结果,以及我们的结果。 CD 代表计算的差异,PD 表示平面差距,SR 表示超高分辨率,详见文章。全分辨率图像可以在附加材料中找到。由该方法所获得的结果在视觉上很明显,特别是沿边缘的颜色。

6 讨论与总结

本文的主要贡献是为在近几十年中为新视 图合成提出的启发式方法和通过基于物理 的生成模型而扣除的能源建立第一次正式

的联系。

该模型可以用来解决一般的问题,其中包括 从一组输入异构的图像生成新的图,和一个 场景(称为几何代理)的几何描述,它可以 是明确的(即 3D 场景的预估几何形状)或 隐式的(即一组新旧视图之间对应的图)。 我们贡献的一部分是分析标乐等人[4]提出 的模型如何满足几乎所有制定的准则。提出 的生成模式提供隐藏在这些准则之后的直 观的启发式正式描述。当呈现新图像时,这 种统一关键的元素是考虑到估计几何代理 的误差。我们广泛讨论了我们基于物理的模 型是如何解释了为什么一些重要的启发当 初被发现。该模型优于现有的技术因为它能 克服自己的局限。此外,在合成和真实图像 上进行的实验表明,我们的方法在呈现图像 的质量方面提高了先进的性能。

今后的工作应更好地处理该模型的可见项。 在这项工作中,可见度是从深度计算出来 的,

但深度本身含有错误,应该传送到可视图。 这可能是一个关键的解决方案来把过去的 缺失连续性启发式收录到基于物理的贝叶 斯框架。同样,把模型延长至非朗伯场景也 是至关重要的,但很辛苦。其中需要包括广 大的 BRDF 和有价值的信息,以正确模拟输 入图和新观图之间的转换。

一个重要的发现是,如果 3D 重建方法或 2D-2D 图像对应方法不仅提供深度估算,而 且还有相关联的深度不确定性,这个基于图 像的绘制方法可以受益于这种信息以便创 造更好的新观图。因此,当发展旨在 IBR 的 新的(隐式或显式)重建方法时,这应该是 一个新的目标。

参考资料

[1] S. Baker and T. Kanade. Limits on super-resolution and how to break them.PAMI, 24(9):1167 - 1183, 2002. 4

[2] A. Beck and M. Teboulle. A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIIMS, 2(1):183 - 202, 2009.5

[3] T. Bishop and P. Favaro. The LightField Camera: Extended Depth of Field,Aliasing, and Superresolution.PAMI, 34(5):972 - 986, 2012.3

[4] C. Buehler, M. Bosse, L. McMillan,
S. Gortler, and M. Cohen. Unstructured
Lumigraph rendering. InProc. SIGGRAPH,
pages 425 - 432. ACM, 2001. 1,2,4,5,6,7
[5] A. Chambolle. An algorithm for total
variation minimization and applications.
Journal of Mathematical imaging and
vision, 20(1-2):89 - 97, 2004. 4

[6] C. -F. Chang, G. Bishop, and A. Lastra. LDI tree: A hierarchical representation for image-based rendering. InProc. SIGGRAPH, pages 291 - 298. ACM, 1999. 2

[7] S. E. Chen and L. Williams. View interpolation for image synthesis. InProc. SIGGRAPH, pages 279 - 288. ACM, 1993.2

[8] T. S. Cho, C. L. Zitnick, N. Joshi,
S. B. Kang, R. Szeliski, and W. T. Freeman.
Image restoration by matching gradient distributions. PAMI, 34(4):683 - 694,
2012.5

[9] P. Debevec, Y. Yu, and G. Borshukov. Efficient viewdependent image-based rendering with projective texturemapping. Springer, 1998. 2

[10] B. Goldluecke and D. Cremers. Superresolution Texture Maps for Multiview Reconstruction. InProc. ICCV, 2009.3

[11] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The Lumigraph. InProc. SIGGRAPH, pages 43 - 54. ACM,1996.2,6

[12] S. Laveau and O. D. Faugeras. 3-d scene representation as a collection of images. InProc. CVPR, volume 1, pages 689 - 691. IEEE, 1994.2

[13] M. Levoy and P. Hanrahan. Light field rendering. InProc. SIGGRAPH, pages 31 - 42. ACM, 1996. 2

[14] L. McMillan and G. Bishop. Plenoptic modeling: An imagebased rendering system. InProc. SIGGRAPH, pages 39 - 46.ACM, 1995.2

[15] R. Raskar and K. -L. Low. Blending multiple views. InProc. of Pacific Graphics, pages 145 - 153. IEEE, 2002. 5 [16] S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. InProc. CVPR, volume 2, pages 860 - 867. IEEE, 2005.4,6

[17] J. Shade, S. Gortler, L.-W. He, and R. Szeliski. Layered depth images. InProc. SIGGRAPH, pages 231 - 242. ACM,1998.2

[18] Q. Shan, J. Jia, and A. Agarwala. High-quality motion deblurring from a single image. InProc. TOG, volume 27, page 73. ACM, 2008.4

[19] H.-Y. Shum, S.-C. Chan, and S. B. Kang. Image-based rendering. Springer, 2007. 1,2

[20] H.-Y. Shum and L.-W. He. Rendering with concentric mosaics. InProc. SIGGRAPH, pages 299 - 306. ACM, 1999. 2 [21] A. Smolic, K. Muller, K. Dix, P. Merkle, P. Kauff, and T. Wiegand. Intermediate view interpolation based on multiview video plus depth for advanced 3D video systems. In Proc. ICIP, pages 2448 - 2451. IEEE, 2008. 2

[22] K. Takahashi. Theory of optimal view interpolation with depth inaccuracy. InProc. ECCV, pages 340 -353. Springer,2010.3

[23] K. Takahashi and T. Naemura. Super-resolved freeviewpoint image synthesis using semi-global depth estimation and depth-reliability-based regularization. In Advances in Image and Video Technology, pages 22 - 35. Springer,2012.3

[24] M. Tanimoto. Overview of free viewpoint television. Signal Processing: Image Communication, 21(6):454 - 461, 2006.2

[25] V. Vaish and A. Adams. The (New)

Stanford Light Field Archive. http://lightfield.stanford.edu,2008.6 [26] P. Vangorp, G. Chaurasia, P.-Y. Laffont, R. W. Fleming, and G. Drettakis. Perception of visual artifacts in image-based rendering of fac, ades. In Computer Graphics Forum, volume 30, pages 1241 - 1250. Wiley Online Library, 2011.3

[27] S. Vedula, S. Baker, and T. Kanade. Image-based spatiotemporal modeling and view interpolation of dynamic events.Proc. TOG, 24(2):240 - 261,2005. 2

[28] S. Wanner and B. Goldluecke. Spatial and angular variational super-resolution of 4D light fields. In Proc. ECCV, pages 608 - 621. Springer, 2012.1,2,3,4,5,6,7

[29] S. Wanner, S. Meister, and B. Goldluecke. Datasets and benchmarks for densely sampled 4D light fields. InProc. VMV, 2013. 6

[30] G. Wolberg. Image morphing: a survey. The visual computer, 14(8):360 - 372,1998.2

[31] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-quality video view interpolation using a layered representation. In Proc. TOG, volume 23, pages 600 - 608. ACM, 2004.3

