指导教师:_____杨涛_____

提交时间: 2015.3.29

The task of Digital Image Processing

数字图像处理

School of Computer Science

No:	34
姓名:_	张祎晨
学号:_	2012302483
班号:	10011205

11-11

图模型的求解最优后验概率估计问题时剪枝得 到局部最优解

Paul Swoboda1, Bogdan Savchynskyy2, Jorg H. Kappes1, Christoph Schnorr1;2 1IPA,2HCI at Heidelberg University, Germany

摘要

我们主要解决无向图模型的能量最小 化问题,也就是马尔科夫随机场的 MAP 估 计问题,这是一个 NP 难问题。我们提出了 一种多项式时间的算法,可以得到其部分非 松弛的积分解。我们的算法用一些参数进行 初始化,这些参数是对地图推理问题进行凸 松弛的解的积分值。在算法中我们对这些值 进行迭代,并对不满足我们的局部最优标准 的值进行剪枝。我们展示了我们的剪枝策略 在某种特定的情况下在理论上是最优的。同 样,我们的算法在标记参数的数量上比之前 的算法效果更好。这种算法的用途很广,因 为它对有着任意因子和任意顺序的模型都 有效,而且可以使用任意方法来结局松弛问 题。算法的运行时间取决于 MAP 估计问题 的凸松弛操作时间。

1. 引言

得到一个马尔科夫随机场的最优标记, 也叫做 MAP 估计或无向图的能量最小化问 题,对于计算机视觉、生物信息学、通信原 理、统计物理、组合优化、信号处理、信息 检索和统计机器学习等方面有着重要的应 用,详见[2,11,30]。但这个问题是 NP 完 全问题,因此出现了近似方法来解决一些比 较困难的问题,一般是图像处理的问题,详 见[11,28]。近似方法无法获得一个最优标 记,但可以得到一个近似解。如果有人证明 由某种近似算法得到的解的部分变量属于 最优标记,那么这种近似算法的价值将大大 提升,剩下的变量可以通过运算量更大的方 法求解从而使原问题得到一个全局最优解, 例如[13]。

在这篇文章中我们提出了一种通过局 部多边形松弛得到的可能但不精确的解来 求得一般的离散马尔科夫随机场 MAP 估计 问题的局部最优解。解决局部多面体可以借 助一些已经实现的专门用来解决线性规划 问题的算法。

1.1 相关工作

我们将得到局部最优解的方法分成两 大类。

(i)基于 Roof duality 现象的方法。最用来解 决持续性问题的论文是[19],这篇论文为稳 定集合问题提出了一个持续性标准,而且证 明了对每一种松弛解法都有效。这种松弛解 法和文献[3]中使用的 Roof duality 方法相同, 这 也是 QPBO 算法[3, 20]的基础。 MQPBO[15]算法将 Roof duality 扩展到多种 标记的情况。作者将多标记问题转化成了二 次的二值化问题,并用 QPBO[3]来求解。可 是,这种转化是基于选定了一个标记序列, 得到的结果也是这样,详见论文[27]中的实 验,实验中标记序列是被随机取样了的。这 种算法无法选择一个最优的标记序列来获 取持续参数的最大值。

Roof duality方法已经被扩展为更高阶 的二值化问题,详见[5,8,10]。广义的用 于解决高阶二值化问题的Roof duality算法 会求得高阶可能性的局部最优参数。然而 Ishikawa和Fixetal的方法[5,8]将高阶问题转 化成了只有一元和数对参数的问题。Fixetal 的方法是Ishikawa方法的一个提高。

1

Windheuseretal提出了一种多标记高阶 Roof duality方法,将MQPBO运用于高阶和 把Kahl和Strandmark的工作运用于多标记情 况进行了概括。可是,Windheuseretal没有没 有描述实现过程,也没有提供在高阶多标记 情况下的实验确认

(ii)标记测试方法。Kovtun研究了一种不同的方法,这种方法专门使用Potts模型。这种方法用辅助子模块问题来测试可能的标记。若某个标记不属于最优解,那它将会被删除。这是一个局部启发式的方法,无法得到一个全局最优解。

对于非二值化多标记问题,可以证明由 (i)中的方法所构造的近似子模型结构不如 标准多面体局部松弛[24, Prop.1]好,我们 在这片论文中考虑类型(ii)中的方法。特别 的,基于论文[27]中求解Potts模型的思想, 我们提出了一种可以识别一般图模型的局 部最优解的方法,这种方法可以由理论证明。 同时,我们也将这种方法与之前提到的5种 方法[5,8,10,15,18]进行比较。

收缩技术。论文[22]中的工作提出了一 种有效的使用局部多面体松弛来减小组合 搜索空间的方法。尽管算法思想和之前提及 的有些相似,但论文[22]中的方法没有提供 一个局部最优解。我们在第4节会有更深入 的讨论。

1.2 内容与组织

采用了论文[27]中的思想,我们提出了 一种新的求解局部最优解的方法。这种方法 对有着任意高阶能量函数的图模型都有效, 而且与其他一些方法([5,8,10,15,18] 中的方法)相比,这种方法可以得到更多的 持续性参数。和论文[27]相似,我们的算法 用一些参数进行初始化,这些参数是对地图 推理问题进行凸松弛的解的积分值。在算法 中我们对这些值进行迭代,并对不满足我们 的局部最优标准的值进行剪枝。我们展示了 我们的剪枝策略在某种情况下在理论上是 最优的。尽管可以随意选取松弛方法,为了 方便起见,我们将展示和实验中使用的松弛 方法限制为局部多面体松弛。更紧的松弛可 能会产生更好的结果。可是,尽管使用局部 多面体松弛,相比较于其他一些方法,我们 还是可以得到足够多的持续性参数,我们将 通过实验证明。我们的方法普适性很强,可 以使用任何凸松弛的方法。不仅如此,我们 方法的计算复杂度仅仅取决于使用的凸松 弛方法的运行时间。

代码可以在 <u>http://paulswoboda.net</u>上下 载

组织。在第二节我们将再一次介绍能量 最小化问题和局部多面体松弛。在第三节我 们提出持续性标准。相关算法和理论分析在 第四和第五节。在第六节讨论向更高阶的扩 展和使用更紧的松弛。第七节提供了我们方 法的实验确认以及和当前方法[5,8,10,15, 18]的比较。

由于空间有限,我们将在附录中提供证 明。

2. MAP-Inference Problem

(最优后验估计推理问题)

对于一个无向图G = (V,E), $E \subset V \times V$, MAP 估计问题表示为:

我们也可以考虑更加普通的有三个或 更多参数的图模型。为了简洁我们在这里将 图模型限制为两个参数。对于向更高阶情况 的扩展我们在第六节中讨论。

 $\min_{u \in \Lambda} \sum \sum \theta_{v}(x_{v}) \mu_{v}(x_{v}) + \sum \sum \theta_{uv}(x_{uv}) \mu_{uv}(x_{uv})$ $\underbrace{ \overset{\mu \in \Lambda_v}{=} \underbrace{ \overset{\nu \in V}{\downarrow_v \in X_v}}_{\psi = \psi} (x_w) \in \{0,1\}, w \in V \bigcup^{w \in E} \underbrace{ \overset{u w \in E}{\downarrow_w \in X_w}}_{\psi = W} E, x_w \in X_w (2.2)$ 局部多面体 Λ_v [30] 是 μ 满足以下约

束的集合

 $\begin{array}{l} \sum_{x_v \in \mathcal{V}} \mu_v(x_v) = 1, \ v \in \mathcal{V}, \\ \sum_{x_v \in \mathcal{V}} \mu_{uv}(x_u, x_v) = \mu_u(x_u), \ x_u \in X_u, \ uv \in \mathcal{E}, \\ \sum_{x_u \in \mathcal{V}} \mu_{uv}(x_u, x_v) = \mu_v(x_v), \ x_v \in X_v, \ uv \in \mathcal{E}, \end{array}$ (2.3) $\mu_{uv}(x_u, x_v) \ge 0, \ (x_u, x_v) \in X_{uv}, \ uv \in \mathcal{E}.$

冬 1. 个典型的图,包含内部节, (黄色有交叉阴影),边界节点(绿色 有斜线).绿色虚线包围部分为集合A 边界边为虚线经过的部分.

我们将 $A \subset V$ 的 Λ_A 做类似的定义。我 们将(2.2)中的目标函数表示为 $E_{\nu}(\mu)$ 。就 特征向量μ来说,公式(2.2)使用了一个过 于完备的标记表示,这经常被叫做临界表示。 在没有完整性约束的条件下求解 $\mu^* \in \operatorname{arg} m_{\mu} \operatorname{in} E_{\nu} \mu$ 称为式 (2.1) 的局 部多面体松弛。

当可以在多项式时间内解决局部多面 体松弛问题时,相关的最优临界值 μ^* 不再 完整,因此这对于(2.2)来说是不可实行的, 也不是最优的。可是对于大多数的问题,多 面体松弛所得到的最优临界向量μ*的大多 数项是完整的。不幸的是,无法保证这些完 整参数中的某一些会是式(2.2)的全局最优 解的一部分,除非在二值化的情况下,也就 是说 $X_{u} = \{0,1\}, \forall u \in V$,且能量为一元或 二元。自然可以想到一个问题:对于一个 NP 难问题,是否存在一个子集 $A \subset V$ 和一个最 小元 μ^0 , 使得 $\mu_v^0 = \mu_v^*$, $\forall v \in A$ 成立。也就 是说 μ^* 在某些集合 A 上是否是局部最优的 或是否是持续的,以及给定一个松弛的解 $μ^* ∈ Λ_ν$, 我们能否找到这样一个集合 A. 在后面的文章中我们提供了一个解决这些 问题的新方法。

3. 持续性

假设对于 $A \subset V$,我们有一个临界值 $\mu \in \Lambda_A$ · 若存在 $\mu_u(x_u) \in \{0,1\}, \forall x_u \in X_u, u \in A$, 我们就说μ"是完整的。在这种情况下,临界 值只和满足条件 $\mu_{\mu}(x_{\mu}) = 1$ 的 μ_{μ} 相关。

我们对边界节点和集合 A ⊂ V 的子集 中的节点的边做如下定义:

定义 1 (边界和内部): 对于 $A \subseteq V$, 称为边界。边界边的独立集合定义为: $\partial E_A = \{uv \in E : u \in A, v \in V \setminus A\}$. & & & $A \setminus \partial V_A$ 表示 A 的内部。

图 1 是边界和内部顶点概念的一个表 示。

定义2(持续性):对于子集A⊂V上的 标记 $x^0 \in X_A$, 若 x^0 与 A 上的局部最优解 一致, 就说 x^0 是 A 上的一个局部最优解。

在这一节的剩余部分,我们在理论1中 描述了描述了我们的新的持续性准则。在推 论1中,我们将凸松弛考虑在内,这可以获 得一个计算上可控的方法。

作为开始,考虑如下对于 $x^0 \in X_A$ 的一 个有效的持续性标准。标记 $x^0 \in X_A$ 和 $\tilde{x} \in X_{V \setminus A}$ 的级联定义如下:

$$(x^0, \tilde{x}) := \begin{cases} x_v^0, & v \in A, \\ \tilde{x}_v, & v \in \mathcal{V} \backslash A \end{cases}$$

其持续性准则定义为:

$$\forall \tilde{x} \in X_{V \setminus A} : (x^0, \tilde{x}) \in \operatorname*{argmin}_{\substack{x \in X_{\mathcal{V}} \\ x_v = \tilde{x}_v \forall v \in \mathcal{V} \setminus A}} E_{\mathcal{V}}(x) .$$
(3.1)

这表示如果我们在 A 的补集上确定了任意 的标记 \tilde{x} ,并且对其用 A 集合上的 x^0 进行 优化,那么级联的标记 (x^0, \tilde{x}) 总是最优的。 这也意味着解 x^0 独立于 $V \setminus A$ 。可是这个标 准很难直接确定,因为这个标准必须在指数 级数量的标记 $\tilde{x} \in X_{V \setminus A}$ 上求解一个 NP 难的 最小化问题。

我们对(3.1)标准进行松弛,这样我们 只须检查一个能量最小化问题的解, 通过修 改边界节点上的一元量 θ_v 来统一约束 $V \setminus A$ 上所有标记的影响。

定义 3 (边界持续性和能量): 对于一 个集合 $A \subset V$ 和一个边界标记 $y \in X_{\partial V_A}$, 我 们 给 每 一 条 边 界 上 的 边 $uv \in \partial E_A, u \in \partial V_A$ 的 边 界 势 能 $\hat{\theta}_{uv,v}: X_u \rightarrow \mathbb{R}$ 做如下定义:

$$\hat{\theta}_{uv,y_u}(x_u) := \begin{cases} \max_{x_v \in X_v} \theta_{uv}(x_u, x_v), & y_u = x_u \\ \min_{x_v \in X_v} \theta_{uv}(x_u, x_v), & y_u \neq x_u \end{cases}$$

使用边界标记y来定义A上的能量函数 $\hat{E}_{A,y}$:

$$\hat{E}_{A,y}(x) \coloneqq E_A(x) + \sum_{uv \in \partial E_A: u \in \partial V_A} \hat{\theta}_{uv, y_u}(x_u)$$
(3.3)

是 A 的能量函数。

图 2. 由式 (3.2) 构造的边界势能函数 θ , 的说明。第二 个标记由边界条件 9得到,因此第二行是取最大值 而其他几行取最小值.

给定一个标记集合 $y \in \partial V_A$,我们使式 (3.3)对于那些和 y 一致的所有标记得到一 个更小的值,对于和 y 无关的所有标记得到 一个更大的值。图2是边界势能的一个说明。 这样做的结果是,如果能量函数(3.3)有一 个和 ∂V_A 上的标记 y 等价的最优解,由之后 的理论 1 可知这对于集合 A 之外是无效的, 因此这个解在 A 上是持续的。

理论1(局部最优标准): 当一个子集 $A \subset V$ 上的标记 $x^0 \in X_A$ 满足如下条件时, 我们就说它是持续的:

 x^{0} ∈ arg min_{x∈X_A} $\hat{E}_{A,x_{OA}^{0}}(x)$ (3.4) 检验理论 1 中的标准是 NP 完全问题, 因为式 (3.4) 是一个和式 (2.1) 同类的最大 后验概率估计问题。对式 (3.4) 中的最小化 Algorithm 1: Finding persistent variables. **Data**: $G = (\mathcal{V}, \mathcal{E}), \theta_u : X_u \to \mathbb{R}, \theta_{uv} : X_{uv} \to \mathbb{R}$ **Result**: $A^* \subset \mathcal{V}, x^* \in X_{A^*}$ Initialize: Choose $\mu^0 \in \operatorname{argmin}_{\mu \in \Lambda_{\mathcal{V}}} E_{\mathcal{V}}(\mu)$ $A^{0} = \{ u \in \mathcal{V} \colon \mu_{u}^{0} \in \{0, 1\}^{|X_{u}|} \}$ t = 0repeat Set x_u^t such that $\mu_u^t(x_u^t) = 1, u \in \mathcal{V}_{A^t}$ Choose $\mu^{t+1} \in \operatorname{argmin}_{\mu \in \Lambda_{A^t}} \hat{E}_{A^t, x^t_{|\partial \mathcal{V}_A^t}}(\mu)$ t = t + 1 $W^t = \{ u \in \partial \mathcal{V}_{A^{t-1}} : \mu^t_u(x^{t-1}_u) \neq 1 \}$ $A^{t} = \{ u \in A^{t-1} \colon \mu_{u}^{t} \in \{0,1\}^{|X_{u}|} \} \backslash W^{t}$ until $A^t = A^{t-1}$: $A^* = A^t$ Set $x^* \in X_{A^*}$ such that $\mu_u^t(x_u^*) = 1$

问题进行松弛,可以得到一个可证明是多项 式时间的持续性标准,见推论1。

推论 1 (可控制的局部最优标准): 假 设 已 经 给 定 临 界 值 $\mu^0 \in \Lambda_A$ 和 标 记 $x^0 \in X_A$, , 有 $\mu^0_u(x^0_u) = 1 \forall u \in A$ $(\mu^0_u, u \in A$ 是完整的)。 若, $\mu^0_u \in \arg\min_{\mu \in \Lambda_A} \hat{E}_{A, x^0_{\mu V_A}}(\mu) 则 x^0 \in A$ 上 是持续的。

4. 持续性算法

现在我们需要求解一个集合 A 和标记 $x \in X_A$,使得式 $\min_{\mu \in \Lambda_A} \hat{E}_{A,x_{\beta \wedge_A}}(\mu)$ 的解满足 推论 1 中的所有情况。算法 1 总结了我们的 方法。

在算法1的初始化步骤中,我们在没有 边界标记的情况下求解了V上的松弛问题, 并使用完整标记的节点来对集合A⁰进行初 始化。接着,在每次迭代t中,我们在局部 多边形上对式(3.3)中定义的能量函数

É_{A'、标v,} 求最小值,该值与集合 A' 和最后一次迭代求得的边界标记的解有关。我们将 A' 中不完整或不符合边界标记的参数移除。 在算法 1 的每次迭代 t 后我们通过移除那些 不完整或不符合标记的参数来缩小 A'。

收敛:由于 V 是有限的且 | A^t | 是单调 递减的,因此算法最多在 V 步后收敛。算法 1 中的每一个字问题都可以用多项式时间解 决。由于算法 1 的迭代次数最多为 V,因此

4

算法1自身也是多项式时间的。实际上只有 部分的迭代是有必要的。

在算法1结束后,我们得到

 $\mu^* \in \arg\min_{\mu \in \Lambda_A^*} \hat{E}_{A^*, x^*_{\partial V_A^*}}(\mu) \quad (4.1)$ $\mu^* \mathbb{E} : : \mathbb{E} : \mathbb{E}$

, 有情况,这证明了持续性。

解决方案的选择:我们所有的结果都和 用于解决松弛问题 min_{$\mu \in \Lambda_A} <math>\hat{E}_{A,y}$ 的特定算 法相独立。但这对于大规模的数据来说非常 重要,在数据规模很大的情况下传统的解决 线性规划问题的单一算法将会失效。使用近 似的解决方案非常重要,只要该方案可以满 足以下两个条件:(i)找到可能的持续性节 点;(ii)对于找到积分解(例如零对偶间隙) 的最优化可以提供有效的条件。这些性质有 如下精确的形式化表示。</sub>

定义 4 (一致标记): 如果标记 $c \in \bigotimes_{v \in V} (X_v \cup \{\#\})$ 满足如下条件:

对于 $c_v \in X_v \forall v \in V$ 都有 $c \in \arg\min_{x \in X} E_v(x)$ 则称其是能量最小化问题(2.1)的一个一致 性标记。

如果一个算法以一个一致性标记作为 输出,那么我们可以调用这个算法来求解问 题(2.1)能量函数的最小化。

一致性标记可以用许多算法进行构造, 例如:

(1) 基于对偶分解的算法[12, 16, 17, 21, 23]可以产生强树形约束,考虑拉格朗日 对偶的算法可以返回部分节点的一致性边。 若对于某个节点这些性质成立,我们用*c*_v表 示这些相关标记,否则*c*_v=#。

(2) 任何用于求解 $\min_{\mu \in \Lambda_{\nu}} E(\mu)$ 的算法的结果都可以用 c_{ν} 来表示:

$$c_v = \begin{cases} x_v, & \mu_v(x_v) = 1 \\ \#, & \mu_v \notin \{0, 1\}^{|X_v|}. \end{cases}$$

命题 1: 将算法 1 中的操作 μ∈arg mit用下式替换:

$$\forall v \in \mathcal{V}, x_v \in X_v, \ \mu_v(x_v) := \begin{cases} 1, \ c_v = x_v \\ 0, \ c_v \notin \{x_v, \#\}, \\ 1/|X_v|, \ c_v = \# \end{cases}$$

其中 c 是用于求解相关最小化问题的一致性确定算 法返回的一致性标记,输出的标记 x^* 就是持续性 的。

和论文[22]中的收缩技术的比较:最近 发布的方法[22],和算法1类似,讲了如何 使用局部多面体松弛来缩减组合搜索范围。 可是,(i)算法1解决了一系列子集A'上 关于完整性标记的附加问题,方法[22]考虑 节点,这只能得到松弛解中的部分标记;(ii) 算法1是多项式时间的,而且只会得到持续 性标记;方法[22]的复杂度为指数级,且无 法得到与持续性有关的信息。但是方法[22] 用于求解全局最优解所使用的组合解决方 案中参数的子集一般比我们的方法小,因为 能量在和式(3.3)的干扰进行对比时保持不 变,我们提出的方法在推论1的持续性标准 下求解最大持续性标记,下面将详细说明最 大持续性标记。

5. 最大持续性标记

按照算法 1 定义 $A^0 \subseteq V$ 和 $\mu^0 \in \Lambda_{A^0}$ 。 满足推论 1 中情况且含有标记 $\mu^0 |_A$ 的子集 $A \subset A^0$ 是部分有序的,因为它在本身的域 中遵循包含 $\subset 关系$ 。在这节我们将说明如下 结论:

- (1) 在满足推论 1 中条件的持续性标 记中,有一个最大的集合
- (2) 算法1可以得到这个最大集合。

这表示算法1在推论1的标准下无法继续 优化。

定义5(强持续性): 若A上的标记 x^* 是满足推论1条件的唯一标记,则标记 $x^* \in X_A$ 是有强持续性的。

理论 2(最大持续性标记):算法1可 以得到最大集合 $A_{strong}^* \subseteq A^* \subset V$ 的超集 A^* ,其中 V 为具有推论1的标准定义的 强持续性参数的集合。

推论 2: 若在算法 1 迭代时对于所有 t=0,...有一个唯一解 $\min_{\mu \in \Lambda_{A'}} \hat{E}_{A', x'_{n_A}}(\mu)$, 则算法 1 得到了一个具有持续性参数的最

5

大集合,这些参数满足推论1中的局部最 优标准。

若在算法 1 执行时最优临界值 μ' 不 是唯一的,则说明算法 1 不具有可确定性, 得到的集合 A^* 不一定是满足推论 1 中的 标准。这种情况最简单的例子是,若松弛 $\min_{\mu \in \Lambda_V} E_V(\mu)$ 是紧的,但有几个积分解。 这些解的任何一个凸组合都会产生一个 非积分解。可是我们的算法无法处理这种 情况,因此解中不完整的参数会被舍弃。

6. 扩展

更高阶: 假设现在我们不再是二元情况, 有一个超图 G=(V,E),其中, *E* ⊂ *P*(*V*), P(V)是 V 的子集:

$$\min_{x \in X} E_V(x) \coloneqq \sum_{e \in E} \theta_e(x_e) \qquad (6.1)$$

对于所有的定义,我们的持续性标准和算法 1采用了前向泛化。和定义1类似,定义一 个节点 *A*⊂*V* 的边界节点子集:

$$\partial V_A \coloneqq \{ u \in A \colon \exists v \in V \setminus A, \exists e \in E \text{ s.t. } u, v \in e \}$$
(6.2)

边界边定义:

$$\partial E_A \coloneqq \{e \in E : \exists u \in A, \exists v \in V \setminus A \text{ s.t. } u, v \in e\}$$

(6.3)

定义 3 中 $e \in \partial E_A$ 的等价边界势能表示为:

$$\hat{\theta}_{e,y}(x) := \begin{cases} \max_{\tilde{x} \in X_e : \ \tilde{x}_{|A \cap e} = x_{|A \cap e}} \theta_e(\tilde{x}), & x_{|A \cap e} = y_{|A \cap e} \\ \min_{\tilde{x} \in X_e : \ \tilde{x}_{|A \cap e} = x_{|A \cap e}} \theta_e(\tilde{x}), & x_{|A \cap e} \neq y_{|A \cap e} \end{cases}$$
(6.4)

现在,理论1、推论1和算法1都可以直接 在更高阶的情况下使用。

更紧的松弛: 从本质上来说,算法1可以使用比 Λ_A 更紧的松弛,比如使用论文[25]中的圆不等式。使用时只需要把 $A \subset V$ 的局部多边形 Λ_A 替换成可行的凸集。

命题 2: 令多边形 $\tilde{\Lambda}_A$ 包含 Λ_A 的所有 情况,且使 $\tilde{\Lambda}_A \subset \Lambda_A \forall A \subseteq V$ 成立。在算法 1 中用 $\tilde{\Lambda}_A$ 代替 Λ_A ,令 \tilde{A}^* 为改良后算法返 回的相关持续性集合。令 $A_{strong}^* \subseteq A^*$ 为推 论 1 定义的强持续性参数的最大子集,且服 从松弛 $\tilde{\Lambda}_A$ 和 Λ_A ,则有 $A_{\text{strong}}^* \subseteq \tilde{A}_{\text{strong}}^*$ 。

7. 实验

我们用计算机视觉和机器学习的不同 标准检查程序在若干个数据集合上测试了 我们的方法,总共测试了 96 个实例,见表 1。接下来我们将详细说明每个数据集合和 相关实验。

方法对比:我们将我们的方法和 MQPBO[15,24],Kovtun的方法[18],Kahl 和 Strandmark的GRD方法[10],Fixetal[5] 和 Ishikawa 的高阶最大子图缩减算法 (HOCR)进行了比较。前两个我们用了自 己实现的程序,其他几个用了Strandmark[26] 免费的代码。我们无法和Windheuser et al 的 方法[32]进行比较,因为作者没有描述在高 阶情况下如何实现他们的方法,而且仅仅提 供了二元情况下的实验评估,在这种情况下 他们的方法和 MQPBO[15]一致。

实现细节:对于大部分二元问题,我们 使用 TRWS 作为算法 1 的近似解决方案, 并使用强树形约束作为一致映射。当达到树 形约束标准(误差小于10⁵)或迭代次数达 到 1000 次时,停止 TRWS 操作。对于 sidechain 二元模型和所有更高阶的模型,我们 使用 CPLEX 作为线性规划的解决方案,因 为 TRWS 对于次优问题不适用。

数据集合于评估:我们给出了数据集合 大概的属性以及用我们的方法和对比的方 法所获得的所有持续性参数的百分比,见表 1。在附件中我们展示了每个问题实例的详 细结果。

图 3. 3种Potts实例下算法1中TRWS所需要的迭代次数.

问题实例 teddy, venus, family,pano, Potts 和 geo-surf 在论文[11]中取得,数据集 合 side-chain 和 protein-interaction 在论文[2] 中取得。

问题实例 teddy 和 venus 来自立体视觉 的不一致估计[28]。对比的算法中甚至没有 一个能在这些数据集合中得到一个持续性 参数,可能是因为标记数量太大,然而在 teddy 实例中我们只对其中的一半标记为持 续的,在 venus 中只标记了 15 个。

实例 pano 和 family 来自 photomontage 数据集合[28]。这些问题相比于不一致估计 问题有更复杂的可能情况,但标记数目更少。 对于这两个数据集合我们比 MQPBO 找到 了更多有意义的持续性参数,特别是在 pano 中我们可以标记超过一半的参数。我们也选 择了 12 个相关的有网格结构和 Potts 交互项 的能量最小化问题。潜在的应用是论文[27] 中考虑的颜色分割问题。我们的普遍方法对 于[27]中的问题在特定 Potts 模型下产生了 新的结果,详见附件。

我们也考虑了 protein-folding 问题的 side-chain 预测。数据集合由数对图模型组 成,该模型由 32—1971 个参数和 2—483 个 标记。具有较少参数的模型有密集的连接和 较大的标记空间,较多参数的模型的连接较 不密集,且标记空间最多含有 100 个参数。 我们的方法比 MQPBO 标记了更多的持续 性临界节点。

蛋白质交互模型 [9] 的目标是找出相 处关联的蛋白质子集。我们的方法将超过 3/4 的节点标记为持续性节点,然而那些以 roof duality 为基础的方法,比如 Fixetat, GRD,HOCR[5,8,10],能得到类似的结果, 而且把大约 1/4 的节点标记为持续性节点。

细胞跟踪问题由高阶二值图模型组成 [14]。给定由显微镜得到的正在生长组织 的 图片,目的是找到所有细胞的世系谱,这世 系谱是变化的且能将所有细胞分开。由于实 现上的一些问题,我们无法用 Ishi-kawa 的 方法[8]来解决细胞跟踪问题。Fix 在文章中 [5]指出他的方法比 Ishikawa 的方法[8]好。 其他方法甚至在理论上都是不可行的。然而 我们成功地将99.9%的节点标记为持续性节 点。

最后,我们尝试了文章[7]中的高阶多标 记的几何图形标记问题(在 Table 1 中为 geosurf)。这问题的实例有 29-1111 个参数,7 个标记,每个标记都有一元、二元、三元项。 MQPBO 无法处理三元项 Fixetat 的方法[5]、 Ishikawa 的方法[8]以及 Kahl 和 Strandmark 的广义 roof duality 方法[10]无法处理超过两 个标记的问题。因此我们在没有比较的情况 下给出了我们的结果.我们在所有 300 种实 例中测试了 50 种无法用局部多面体松弛求 解的实例。结果我们能够标记为持续的参数 数量还是很高——平均超过 80%。

运行时间:算法的运行时间主要和使用 的局部多面体松弛方法有关。准确地说没有 一个普遍的规则可以衡量我们算法的运行 时间。我们在 Figure 3 中展示了 Potts 数据 集合实例上的三次迭代。在 clownfish 实例 中 TRWS 的迭代次数在第一次迭代后下降 很快。在 crops 实例中,迭代次数的初始值 更小,但是迭代次数下降不是很快,而且若 想对参数进行剪枝,需要进行更多次数的迭 代。对于复杂的 pfau 实例,算法 1 需要更多 次数的迭代,而且 TRWS[16]的迭代次数基 本不下降。在附件中有更多的图来展示这些 情况。

剪枝: 在我们的实验中,算法1中的集合 A⁰ 包含了至少 97%(经常超过 99%)的参数,因此只有不超过 3%的参数在初始化中因为不是持续的而被剪枝。在后来的迭代中超过 99.99%的参数是持续的,参数被剪枝主要是因为不满足边界条件。

8. 总结和展望

我们提出了一种求解无向图模型的持 续性参数的新方法。从经验上看,在从单个 数据集合上找到的持续性标记的数量方面, 这种方法比所有测试的方法都好。我们的方 法普适性很好,对任意可能的阶和种类的图 模型都适用。目前没有合适的求解能量最小 化问题的多面体松弛方法。所有随机、近似 的方法都可以用在我们的方法中。

将来我们计划在实现上加速我们的算法。并会考虑更好的持续性标准,这不仅可 以在单标记的情况下确定持续性参数,也可 以在多个标记下确定持续性参数。

致谢:这项工作得到了德国研究基金 (DFG)在"Spatio-/Temporal 图模型在图 像分析中的应用"项目中的支持,同样感谢 Marco Esquinazi 在讨论中给予了很大的帮助。

Experiment	#I	#L	#V	0	MQPBO	Kovtun	GRD	Fix	HOCR	Ours
teddy	1	60	168749	2	0	t	t	t	+	0.4423
venus	1	20	166221	2	0	t	Ť	t	Ť	0.0009
family	1	5	425631	2	0.0432	+	Ť	†	†	0.0611
pano	1	7	514079	2	0.1247	+	t	ť	t	0.5680
Potts	12	≤ 12	≤ 424720	2	0.1839	0.7475	÷.	+	+	0.9231
side-chain	21	≤ 483	≤ 1971	2	0.0247	+	t t	+	†	0.6513
protein-interaction	8	2	≤ 14440	3	+	+	0.2603	0.2545	0.2545	0.7799
cell-tracking	1	2	41134	9	+	t	+	0.1771	+	0.9992
geo-surf	50	7	≤1111	3	†	t	t	†	t	0.8407

表 1. 方法[5,8,10,15,18]和我们的方法所获得的持续性参数的百分比.标记;表示该方法不可用.列 #I,#L,#V,O 分别表示实例,标记,参数和势能的最高阶的数目.我们在附录中给出了每个独立数据集合上的运行结果.列 "Ours"表示我们的方法相比 其他方法的优势.

参考文献

[1] OpenGM benchmark. http://hci.iwr.uniheidelberg.de/opengm2/?10=benchmark. 10

[2] The probabilistic inference challenge (PIC2011).http://www.cs.huji.ac.il/project/PA SCAL/. 1, 6, 10, 11

[3] E. Boros and P. L. Hammer. PseudoBoolean optimization.Discrete Applied Mathematics, 2002. 1

[4] J. Desmet, M. D. Maeyer, B. Hazes, and I. Lasters. The dead-end elimination theorem and its use in proteinside-chain positioning. Nature, 356, 1992. 2

[5] A. Fix, A. Gruber, E. Boros, and R. Zabih. A graphcut algorithm for higher-order Markov random _elds.In ICCV, 2011. 1, 2, 6, 7, 11

[6] P. Hammer, P. Hansen, and B. Simeone.Roof duality, complementation and persistency in quadratic 0-1 optimization. Math.Programming, 28, 1984. 3

[7] D. Hoiem, A. A. Efros, and M. Hebert. Recoveringsurface layout from an image. IJCV, 75(1), 2007. 7,11

[8] H. Ishikawa. Transformation of general binary MRFminimization to the _rst-order case. PAMI, 33(6),June 2011. 1, 2, 6, 7, 11

[9] A. Jaimovich, G. Elidan, H. Margalit, and N. Friedman.Towards an integrated proteinprotein interaction network: A relational Markov network approach. Jour. of Comp. Biol., 13(2), 2006. 6, 11

[10] F. Kahl and P. Strandmark. Generalized roof duality. Discrete Applied Mathematics, 160(16-17), 2012. 1, 2, 6, 7, 11

[11] J. H. Kappes, B. Andres, F. A. Hamprecht,
C. Schn•o rr, S. Nowozin, D. Batra, S. Kim, B.
X. Kausler, J. Lellmann, N. Komodakis, and C.
Rother. A comparative study of modern inference techniques for discrete energy minimization problem. In CVPR, 2013. 1, 6, 10
[12] J. H. Kappes, B. Savchynskyy, and C.
Schn•o rr. A bundle approach to e_cient MAP-

inference by Lagrangian relaxation. In CVPR, 2012. 5

[13] J. H. Kappes, M. Speth, G. Reinelt, and C. Schn•orr. Towards e_cient and exact MAP-inference for large scale discrete computer vision problems via combinatorial optimization. In CVPR, 2013. 1

[14] B. X. Kausler, M. Schiegg, B. Andres, M.
S. Lindner, U. K•o the, H. Leitte, J. Wittbrodt,
L. Hufnagel, and F. A. Hamprecht. A discrete chain graph model for 3d+t cell tracking with high misdetection robustness. In ECCV, 2012.

[15] P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov, and P. Torr. On partial optimality in multi-label MRFs. In ICML, 2008. 1, 2, 6, 7, 10

[16] V. Kolmogorov. Convergent treereweighted message passing for energy minimization. PAMI, 28(10), Oct. 2006. 5, 6, 7,
10

[17] N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond via dual decomposition. PAMI, 33(3), 2011. 5

[18] I. Kovtun. Partial optimal labeling search for a NPhard subclass of (max,+) problems. In DAGM, 2003. 2, 6, 7, 10

[19] G. L. Nemhauser and L. E. Trotter. Vertex packings: Structural properties and algorithms. Math. Programming, 8, 1975.

[20] C. Rother, V. Kolmogorov, V. S. Lempitsky, and M. Szummer. Optimizing binary MRFs via extended roof duality. In CVPR, 2007. 1

[21] B. Savchynskyy, J. Kappes, S. Schmidt, and C. Schn•orr. A study of Nesterov's scheme for Lagrangian decomposition and MAP labeling. In CVPR, 2011. 5

[22] B. Savchynskyy, J. H. Kappes, P. Swoboda, and C. Schn•orr. Global MAP-optimality by shrinking the combinatorial search area with convex relaxation. In NIPS,

2013. 2, 5

[23] B. Savchynskyy, S. Schmidt, J. H. Kappes, and C. Schn•orr. E_cient MRF energy minimization via adaptive diminishing smoothing. In UAI, 2012. 5

[24] A. Shekhovtsov, V. Kolmogorov, P. Kohli, V. Hlavac, C. Rother, and P. Torr. LPrelaxation of binarized energy minimization. Technical Report CTU{CMP{ 2007{27, Czech Technical University, 2008. 2, 6

[25] D. Sontag. Approximate Inference in Graphical Models using LP Relaxations. PhD thesis, Massachusetts Institute of Technology, 2010. 6

[26] P. Strandmark. Generalized roof duality. http://www.maths.lth.se/matematiklth/persona l/petter/pseudoboolean.php. 6

[27] P. Swoboda, B. Savchynskyy, J. H. Kappes, and C. Schn•orr. Partial optimality via iterative pruning for the Potts model. In SSVM, 2013. 1, 2, 6

[28] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. F. Tappen, and C. Rother. A comparative study of energy minimization methods for Markov random _elds with smoothness-based priors. PAMI, 30(6), 2008. 1, 6

[29] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. MAP estimation via agreement on trees: messagepassing and linear programing.IEEE Trans. Inf. Theor., 51(11), 2005. 5

[30] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn., 1(1-2):1{305, Jan. 2008. 1, 2, 3

[31] T. Werner. A linear programming approach to maxsum problem: A review. PAMI, 29(7), 2007. 1, 5

[32] T. Windheuser, H. Ishikawa, and D. Cremers. Generalized roof duality for multilabel optimization: Optimal lower bounds and persistency. In ECCV, 2012. 2, 6

[33] C. Yanover, O. Schueler-Furman, and Y.

Weiss. Minimizing and learning energy functions for side-chain prediction. Jour. of Comp. Biol., 15(7), 2008. 6, 10

9. 附录

为了证明定理1,我们需要如下引理:

引理 1: 给定 $A \subset V$ 和 $y \in X_{\partial V_A}$, 令 x^0 和 x 为 V 上的两个标记, 且 $y_u = x_u^0$, 则存 在 $uv \in \partial E_A$, 使得下式成立: $\theta_{uv}(x_u^0, x_v^{'}) + \hat{\theta}_{uv,v}(x_u^{'}) - \hat{\theta}_{uv,v}(x_u^0) \le \theta_{uv}(x_u^{'}, x_v^{'})$ (9.1)

证明: 有 $x_u = x_u^0$,此外,由定义3可知,不 等式(9.1)和下式等价:

$$\theta_{uv}(x_u^0, x_v') + \min_{x_v \in X_v} \theta_{uv}(x_u', x_v) - \max_{x_v \in X_v} \theta_{uv}(x_u^0, x_v) - \theta_{uv}(x_u', x_v') \le 0.$$
(9.2)

在(9.2)的最大值和最小值中选择 x_v , 和 x'_v 可以得到结果。

定理 1 证明: 假设 $x^{0} \in \arg\min_{x \in X_{A}} \hat{E}_{A,y}(x)$ 符 合 边 界 标 记 $x_{v}^{0} = y_{v} \forall v \in \partial V_{A}$, 令 $\tilde{x} \in \operatorname{arg} \operatorname{m}_{x \in x} \operatorname{n} E x$ 满足 $x_{v} = x_{v}^{0} \forall v \in A$ (9.3) 令 $x' \in X$ 为一个任意标记,则有如下推导: $E(\tilde{x})$ $= E_{A}(x^{0}) + E_{V \setminus A}(\tilde{x}) + \sum_{uv \in \partial \mathcal{E}_{A}} \theta_{uv}(x_{u}^{0}, \tilde{x}_{v})$ $= E_{A}(x^{0}) + \sum_{uv \in \partial \mathcal{E}_{A}} \hat{\theta}_{uv,y}(x_{u}^{0})$ $+ E_{V \setminus A}(\tilde{x}) + \sum_{uv \in \partial \mathcal{E}_{A}} \left[\theta_{uv}(x_{u}^{0}, \tilde{x}_{v}) - \hat{\theta}_{uv,y}(x_{u}^{0}) \right]$ $= \hat{E}_{A,y}(x^{0})$ $+ E_{V \setminus A}(\tilde{x}) + \sum_{uv \in \partial \mathcal{E}_{A}} \left[\theta_{uv}(x_{u}^{0}, \tilde{x}_{v}) - \hat{\theta}_{uv,y}(x_{u}^{0}) \right]$ $\leq \hat{E}_{A,v}(x')$

$$\leq E_{A,y}(x) + \sum_{uv \in \partial \mathcal{E}_A} \left[\theta_{uv}(x^0, x'_v) - \hat{\theta}_{uv,y}(x^0_u) \right]$$

$$= E_A(x') + \sum_{uv \in \partial \mathcal{E}_A} \hat{\theta}_{uv,y}(x'_u) + E_{V \setminus A}(x') + \sum_{uv \in \partial \mathcal{E}_A} \left[\theta_{uv}(x^0_u, x'_v) - \hat{\theta}_{uv,y}(x^0_u) \right]$$

$$\leq E_A(x') + E_{V \setminus A}(x') + \sum_{uv \in \partial \mathcal{E}_A} \theta_{uv}(x'_u, x'_v)$$

$$= E(x').$$

$$(9.4$$

第一个不等式是由 x^0 在 $\hat{E}_{A,y}$ 上的优化和 \tilde{x} 在式 (9.3) 上的优化得到。第二个不等式是 因为引理 1。由于 x'是随机的,因此 x^0 是全 局最优解的一部分。

推论 1 证明:表达式(3.5)可写成下式: $\mu^{0} \in \arg\min_{\mu \in \Lambda_{A}, \mu \in \{0,1\}} \hat{E}_{A, x^{0}_{\wp V_{A}}}(\mu)$ (9.5)

因为我我们假设 μ^0 是完整的。因为式(2.1) 和(2.2) 是等价的且相关标记 x^0 满足定理 1 中的条件, x^0 是 A 上的局部最优解。

为证明定理2,我们需要如下引理:

引理 2: 令 $A \subset B \subset V$ 为V上的两个 子集, $\mu_A \in \Lambda_A$ 为A上的临界值, $x^A \in X_A$ 为唯一满足推论 1 中条件(例如 x^A 为强持 续的)的标记。令 $y^B \in X_{\partial B}$ 边界标记使得 $x_v^A = y_v^B \forall v \in \partial A \cap \partial B$ 。

则有对于所有集合 B 上的临界值 $\mu^* \in \operatorname{arg\,min}_{\mu \in \Lambda_B} \hat{E}_{B,y^B}(\mu)$, $\mu^*_{\nu}(\mathbf{x}^A_{\nu}) = 1 \forall \nu \in A$ 成立。

证明: 与定理1证明相似。

定理 2 证明:我们使用算法 1 中的符号 标记,可以证明对于每一个 $\overline{A} \subseteq V$,存在一 个唯一的持续性标记 $\overline{x} \in X_{\overline{A}}$ 满足推论 1 中 所有条件。对于算法 1 的每次迭代,都有 $\overline{A} \subseteq A^{t}$,且对于所有 $v \in V_{\overline{A}}$,有 $\overline{x}_{v} = x_{v}^{t}$ 。 将推论 2 应用在 $A := \overline{A} 和 B := A^{0} (= V) 上。$ 对于推论 2 中所有的 $v \in \partial \overline{A} \cap \partial V = \emptyset$,条 件 $\overline{x}_{v} = y_{v}^{B}$ 是一个空条件。因此,推论 2 保 证了对于所有的 $\mu^{0} \in \operatorname{arg\,min}_{\mu \in \Lambda_{v}} E(\mu)$, $\mu_{v}^{0}(\overline{x}_{v}) = 1$ 对于任意 $v \in \overline{A}$ 成立。

现在假设对于 t-1 次迭代,上述结论成 立,我们需要证明 t 时也成立。这就涉及到 引理 2 中 $A \coloneqq \overline{A}$, $B \coloneqq A'^{-1}$ 和 $y^B \coloneqq x_{|\partial V_{A'^{-1}}}^{t-1}$ 引理 2 中的条件假设在 t-1 时成立。推论 2 保证了 $\mu' \in \arg\min_{\mu \in \Lambda_{A'^{-1}}} \hat{E}_{A'^{-1}, x_{|\partial V_{A'^{-1}}}}(\mu)$ 具 有这样的属性。

命题1

证明:算法1执行完成后,我们得到了 一个节点 A^* 的子集,一个边界标记 $y^* \in X_{\partial V_A}$,一个等价于 ∂V_A 上的 y^* 的 x^* , 以及一个对于 $u \in A^*$ 的持续性映射 $c_u = x_u^*$ 。 因此,由定义4 可以得到如下关 系: $x^* \in \arg \min_{x \in X_A} \hat{E}_{A^*,y^*}$,和 x^* 满足定理 1中的条件。

命题2

证明:显然,每一个可以由推论1用松 弛 Λ_A 找到的强持续性标记也可以由推论1 使用松弛 $\tilde{\Lambda}_A$ 得到。因此,由将理论2运用 到 Λ_A 和 $\tilde{\Lambda}_A$ 的结果,我们可以得到算法1可 以找到对于 Λ_A 和 $\tilde{\Lambda}_A$ 的所有强持续性标记, 且由上述提及的可知,前者包含后者。

Potts									
Instance	MQPBO	Kovtun	Ours	Instance	MQPBO	Kovtun	Ours		
clownfish-small	0.1580	0.7411	0.9986	crops-small	0.1533	0.6470	0.9976		
fourcolors	0.1444	0.6952	0.9993	lake-small	0.1531	0.7487	1.0000		
palm-small	0.0049	0.6865	0.9811	penguin-small	0.1420	0.9199	0.9998		
pfau-small	0.0069	0.0559	0.1060	snail	0.7842	0.9777	0.9963		
strawberry-glass-2-small	0.0275	0.5499	1.0000	colseg-cow3	0.4337	0.9989	1.0000		
colseg-cow4	(*)	0.9990	1.0000	colseg-garden4	0.0150	0.9496	0.9990		
	(.)	1		Conces Burneri	010100	010100	0.00		

^{(*):} MQPBO 由于实现的限制无法得到结果

表 2. 由Kovtuns的方法 [18], MQPBO [15] 和我们的方法使用文章[1, 11]中的Potts交互项在图像分割问题上所得到的持续性参数的百分比. 实例有21000 – 424720 个参数和 3 – 12 个标记.

图 4.在Potts数据结合上我们算法中TRWS所需要的迭代次数.

Instance	MQPBO	Ours	Instance	MQPBO	Ours	Instance	MQPBO	Ours
1CKK	0.0002	0.3421	1CM1	0.0000	0.5676	1SY9	0.0004	0.5758
2BBN	(*)	0.2162	2BCX	(*)	0.4103	2BE6	0.0008	0.2000
2F3Y	0.0000	0.0857	2FOT	0.0011	0.3714	2HQW	0.0000	0.2778
2060	0.0000	0.2632	3BXL	0.0000	0.5833	pdb1b25	0.0265	0.9615
pdb1d2e	0.0496	0.9857	pdb1fmj	0.0339	0.9707	pdb1i24	0.0486	1.0000
pdb1iqc	0.0707	0.9894	pdb1jmx	0.0428	0.9783	pdb1kgn	0.0355	0.9708
pdb1kwh	0.0344	0.9646	pdb1m3y	0.0720	0.9677	pdb1qks	0.0526	0.9957

表 3.对于文章[2, 33]中的side-chain预测问题我们的方法和MQPBO所得到的持续性参数的百分比.实例有32-1971个参数, 2-483个标记.

Protein Protein Interaction									
Instance	GRD	Fix	HOCR	Ours	Instance	GRD	Fix	HOCR	Ours
1	0.1426	0.1357	0.1357	0.7614	2	0.3818	0.3766	0.3766	0.8682
3	0.1426	0.1327	0.1357	0.7614	4	0.3740	0.3720	0.3720	0.9952
5	0.3706	0.3706	0.3706	0.5811	6	0.1478	0.1398	0.1398	0.8436
7	0.1456	0.1352	0.1352	0.7772	8	0.3772	0.3735	0.3735	0.6510

表 4. Kahl 和 Strand-mark [10]的广义 roof duality (GRD) 方法, Fix et al [5] 的方法, Ishikawa的HOCR方法 [8]和 我们的方法在文章[2,9]所提到的蛋白质连接问题中所得到的持续性参数的百分比. 实例有 14257 - 14440个参数 和2个标记. 问题最多到3阶. Fix et al的方法[5]和Kahl 和 Strandmark的方法 [10] 给出了相同的持续性参数,因此 我们不单独列出.

Instance	Ours	Instance	Ours	Instance	Ours	Instance	Ours
4	0.5969	10	0.7713	12	0.9828	18	0.7068
23	0.7216	25	0.7674	31	0.912	34	0.9950
42	0.9089	43	0.7726	48	0.7508	49	0.8055
54	0.7071	59	0.7004	65	0.944	100	0.4585
102	0.9596	104	0.9858	111	0.9972	115	0.8417
116	0.7511	120	0.9626	124	0.9699	130	0.9691
144	0.9593	147	0.9608	148	0.5524	150	0.6006
160	0.9147	166	0.9865	168	0.8950	176	0.8225
179	0.9592	214	0.9720	231	0.9370	232	0.9603
234	0.7847	237	0.8959	250	0.7106	253	0.9653
255	0.9573	256	0.7496	264	0.9951	276	0.8863
277	0.7651	281	0.5775	284	0.8980	288	0.9956
293	0.8191	297	0.5781				

Geometric Surface Labeling

表 5. 我们的方法对于文章[7]中的表面标记问题得到的持续性参数的百分比].实例有29 – 1111个参数和 7 个标记和三元项. 300个 数据集合实例中的50个无法用局部多边形松弛解决.对于比较困难的实例,我们只是列出了平均的持续性参数的数目.