指导教师:_____杨涛_____

提交时间: _____2016/3/13___

No :	01	
姓名:	张慧明	
学号:	2013302535	
班号:	10011303	

ENIC-12

加权流形的热扩散:一种新的三维结构的非刚性形状描述符

艾哈迈德.穆斯塔法 阿里法拉克 斯汪森.大卫 Moumen T. El-Melegy 埃及艾斯尤特省 艾斯尤特大学 电力工程系

美国肯塔基州 路易斯维尔市 路易斯维尔大学 计算机视觉与图像处理实验室

美国肯塔基州 路易斯维尔市 路易斯维尔大学数学系

mostafa.abdelrahman@aun.edu.eg, {aly.farag, david.swanson}@louisville.edu,

moumen@aun.edu.eg

摘要

本文提出了一种建立基于加权热内核信号 (W-HKS)的三维非刚性的模型的方法。第一, 我们展示如何在加权的流形上把光度信息作为 一种权值,我们还提出一种新颖的在加权集合管 热扩散的新构想。第二,我们提出了一种新的用有 限元近似方程的离散化方法。最后,加权热内核信 号是用作形状描述符。提出了描述符编码的光度, 基于一个方程的解的几何信息。我们也提出一个 新方法,引入了具有尺度不变性的加权热内核信 号。性能测试在两个基准数据集进行。结果确实 证实了该方法在变形形状检索问题上的高性能 的,并表明,该方法在应对不同的形状分析的挑 战时是有用的,而纯几何和纯光度的方法都失败 了。

1. 介绍

三维扫描仪的出现,多视点立体技术和最近 深度照相机的使用让获得三维模型比以前更容 易。这导致了三维数据数量的显著增长。因此,

开发一个三维搜索引擎变得更加重要。所以,开 发一个图形搜索和检索算法吸引了很多组织和 检索三维内容的研究。为了这些目标,一些技术 和算法的开发已经持续了很多年。这些技术的一 个关键点是构建一个高效的形状描述符,这不是 一个简单的任务。最近,许多传感器除了能够获得 三维形状信息,还能获得颜色信息,多视图立体 技术也能够恢复几何和光度信息。因为这些光度 特性含有丰富的关于真实对象视觉外观的信息, 所以它们可以在许多形状分析应用上发挥重要 的作用,如在形状匹配和通信上。这种新的需求 及其重要的应用增加了另一个新的方面的问题 难度。到目前为止大多数被提议的描述符局限于 形状,也就是说,他们只分析几何和/或三维模型的 拓扑性质。因此除了需要考虑目标对象形状的表 示和描述,还要考虑颜色。本文研究的领域是变 形形状的表示,目的是为了发展一个有效的并结 合了颜色信息以及几何形状信息的描述符。寻求 表示应对非刚性的转换是许多目标应用程序的 关键需求。

我们已经做了一些把融合了几何和光度信

息作为形状描述符的实验。评价关于其它几个需求的三维检索方法可以在[28]中找到。

1.1 相关工作审查

这里有大量关于构造三维形状描述符的工 作(比如, [9, 26, 17, 11, 17, 16, 29, 2])。在这 方面,有一个具有挑战性的问题是:如何处理非 刚性的变换。非刚性的形状变形的问题还需要更 多的工作来弥补自由度造成的局部变形。在过去 的十年中,人们已经为不变特性到非刚性的变形 的拓展中付出了巨大的努力。兰德和基梅尔提出 把测地线距离作为度量空间内在指标的形状建 模,这是不变的非弹性变形。布罗斯特等[5]使用 了这个把距离度量定义为内部二维形状的框架。 罗伊特等[23]把拉普拉斯算子光谱作为固有的形 状描述符,他们使用拉普拉斯光谱 DNA 形状或 任何二维或者三维数字指纹的复印(表面或固 体)。他们证明了"DNA 形状"是一个等距不变量的 形状描述符。Rustamov[25]在欧几里得空间里使 用等距不变量的形状表示,然后比较直方图形状 之间的欧几里得距离。

另一种类型的内在几何学是由形状的热扩 散所产生的。Coifman 和 Lafon[20]推广扩散几何 的符号,与尺度空间方法在图像处理密切相关。孙 等人[27]和[12]提出把热内核信号(HKS)作为 基于多尺度热扩散的内核的形不变描述符。HKS 信号有许多让人满意的描述信号的性能,但是它 也有等比的灵敏度。尽管他们指出未来形状检索 应用程序的潜力,但是作者没有证明如何使用 HKS 检索形状。布罗斯特等。[7,6]和[1]通过一系 列转换解决了 HKS 的规模问题。

所有这些努力都只集中在三维形状上。最近, 把光度信息作为计算三维形状的描述符吸引了 更多的研究。刘等人提出了一种方法,即选出一 些既不是形状变异大也不是颜色变化大的区域 上的点,然后把这些点定义为一个信号。变形的 几何尺度不变特征转换描述符被直接定义在表 面上在[30]上。Kovnatsky等的工作[18、19]为了 融合在局部和全局形状描述符的的几何和光度 信息,使用了几何扩散框架。他们的解释设是基 于一个关于多种形状嵌入到一个高维空间,并且 嵌入的坐标代表光度信息的特别定义的扩散过 程。但是他们的方法未能提供一个为热内核框架 的数学证明或离散化方法。Iglesias 和 Kimmel [15]使用基于薛定谔运算符合并的结构数据的 扩散距离,,然后把薛定谔的直方图扩散距离与的 EMD 距离进行比较。最后,S.Biasotti 等人[4]提 出了把 PHOD 描述符,它把光度,混合和几何描 述结合成一个具有三维物体检索结构的描述符。

1.2. 论文贡献

在本文中,我们第一次提出基于变形形状的 几何学扩散的数学框架。我们提出了一种基于热 内核信号的形状匹配和检索的方法。最重要的贡 献,我们展示了如何在形状流形上把光度信息作 为一个权值。我们也提出一个新颖的关于热扩散 加权流形的构想。第二,我们在加权热内核提出 了一种新的离散化方法。我们也提出了一个新方 法来引入加权热内核信号的尺度不变性。最后, 加权热内核信号被用作形状描述符。被提出的尺 度归一化法通过减少对噪声的敏感性消除了规 模效应。提出了把基于一个解的光度和几何信息 编码的描述符。性能测试是在两个具有三维模型 [8,3]的基准数据集 SHREC 13 和 SHREC'14 上。我们的方法在最近竞争 SHREC'13 三维变形 模型的检索中比其它所有的方法都表现得好,也 更具有优势。这可以归因于我们方法对捕捉对象 形状和结构相比于其他方法而言具有更好的能

力以及更好的标度不变性。图 1 展示了提出的描述符的步骤。

本文组织如下。第二节提出了一些基本概念, 如热方程和热内核。然后提出了加权流型热内核, 并获取新的基于有限元热内核的加权离散化方 法。第三节展示了如何根据一个新的数学概念构 建一个新的描述符。我们会在在第四节给出我们 的实验结果。结论和未来的工作在第五节给出。

2. 热方程和热内核

热量是能量,通过热传递,从一个系统转移 到另一个系统。热方程是一个重要的偏微分方程, 它描述热量在一个给定的地区(或温度)的分布规 律。解这个方程的一种方法是使用特征函数和 Laplace-Beltrami 算子的特征值。在本节中,我们 将描述在流形上的热方程的解决方案,和加权热 方程加权的流形基于有限元近似;此外,我们会给 出热内核以及加权热内核的定义。建立在t时刻 的热流模型,热方程是二阶抛物型偏微分方程 [24],通常写成

$$\Delta_{\mathcal{M}} U(\mathbf{x}, \mathbf{t}) = -\frac{1}{2} \frac{\partial}{\partial t} U(\mathbf{x}, \mathbf{t})$$
(1)

 Δ_{M} 表示M的半正定的 Laplace-Beltrami 算 子,其中运算符是黎曼几何的拉普拉斯算子(注 意,在 RHS 中有导电率常数,但是在这里我们 不使用)。热方程的解决方案 $U(\mathbf{x}, t)$ 的初始条件 $U(\mathbf{x}, 0) = u(\mathbf{x})$,描述了在时刻 t 点表面的热量。 对于所有 $\mathbf{x} \in \partial M$ 和 t, $U(\mathbf{x}, t)$ 需要满足狄利克雷 边界条件 $U(\mathbf{x}, t) = 0$ 。

2.1 热核

在 \mathcal{M} 上热扩散传播是由热方程给出的一个 初始热量分布 u; $\mathcal{M} \subseteq \mathbb{R}^{d} \to \mathbb{R}$,作为定义在紧 流形 \mathcal{M} 上的标量函数,u的其规模表示为: U: $\mathcal{M} \times \mathbb{R} \to \mathbb{R}$. $\lim_{t \to 0} U(\mathbf{x}, t) = u(\mathbf{x})$ 对所有 t 的

 $U(\mathbf{x}, \mathbf{t}) \int_{\mathcal{M}} K (\mathbf{x}, \mathbf{y}, \mathbf{t}) d\mathbf{t} \circ$

它可以表明热核具有下面频谱分解:

$$K(\mathbf{x},\mathbf{y},\mathbf{t}) = \left(\sum_{i=1}^{\infty} e^{-\lambda_i t} \Phi_i(\mathbf{x}) \Phi_i(\mathbf{y})\right), \tag{2}$$

其中 λ_i 和 Φ_i 分别是 Laplace-Beltrami 算子 的第i个特征值和特征函数, x和y表示两个顶 点(对于所有 x满足 $\Delta \mathcal{M}\Phi_i(\mathbf{x}) = \lambda_i \Phi_i(\mathbf{x})$ 。热核 $K(\mathbf{x}, \mathbf{y}, \mathbf{t})$ 有很多性能[27,14]:,在等距变形下。对 称性和不变性:这是 Laplace-Beltrami 算子不变 性的直接后果。信息性:它只考虑对时间域的限 制,因此我们可以获得一个简洁的,信息型的信 号。多尺度性:对于不同的t值,热内核反映了 x在形状的局部特性。在大的t之下从角度x看 \mathcal{M} 的总体结构,在基础流形的扰动下,它是稳定的。 这是经典的热内核,在以下小节我们将介绍我们 的新构造的加权热内核。

Figure 1. Construction of the proposed descriptor.

2.2. 加权流形热内核

图 2: 离散的三角面。左图:一个顶点^{X_i}和它的相邻面。 中间图:角度^{α_{ij}}和 β_{ij} 的定义,以及权重 h_i , h_j , $h_{T_{\alpha}}$ 和 $h_{T_{\beta}}$ 。右图:三角形T顶点i,j,k所对应的内角分别定 义为 α_i , α_j , α_k 。

加权流形(密度流形)是一种黎曼流形 \mathcal{M} , 被赋予了对黎曼度量 σ 有光滑正面密度h的测度 μ 。加权拉普拉斯算子 $\Delta \mathcal{M}$, μ , 归纳 Laplace-Beltrami 算子被定义为:

$$\Delta_{\mathcal{M}, \mu} U = div_{\mu} \nabla U$$

= $\frac{1}{h} div(h \nabla U)$
= $\frac{1}{h\sqrt{\det g}} \frac{\partial}{\partial x_{i}} (h \sqrt{\det g}) \frac{\partial}{\partial x_{i}} U$

对于任何在 \mathcal{M} 的光滑函数U,其中g是其中黎

曼度量。可以拓展在 $L^{2}(\mathcal{M},\mu)$ 中的 $\Delta \mathcal{M},\mu$ 成为 自共轭算子,允许定义一个热半群 $e^{-i\Delta \mathcal{M},\mu}$ 。热半 群的积分内核 $K_{t}(\mathbf{x},\mathbf{y})$,称为热内核 (\mathcal{M},μ) 。我们 提出加权热方程:

$$\Delta_{\mathcal{M}, \mu} \mathbf{U}(\mathbf{x}, \mathbf{t}) = -\frac{1}{2} \frac{\partial}{\partial t} U(\mathbf{x}, \mathbf{t})$$
(4)

初始条件为U(x,t) = u(x) 狄利克雷边界条件 U(x,t) = 0,对于所有 $x \in \partial M$ 和 t > 0都满足。

2.3. 加权热方程的有限元离散化

加权热方程的弱形式可以通过乘以一个测 试函数 $\Phi \in C^2$,然后在加权流形 (\mathcal{M}, μ) 对关系结 果进行积分运算。

$$\int_{\mathcal{M}} \varphi \frac{\partial}{\partial t} U(\mathbf{x}, \mathbf{t}) \, \mathrm{d}\, \mu + \frac{1}{2} \int_{\mathcal{M}} \varphi \Delta_{\mathcal{M}, \mu} U(\mathbf{x}, \mathbf{t}) \, \mathrm{d}\, \mu = 0$$
(5)

其中, d*μ=hdσ*, *dσ* 是黎曼度量 h 是正面光 滑密度。然后通过我们得到的分歧写加权拉普拉 斯算子,可以得到:

$$\int_{\mathcal{M}} \varphi \frac{\partial}{\partial t} Uh d\sigma + \frac{1}{2} \int_{\mathcal{M}} div(h\nabla U) \varphi d\sigma = 0,$$
(6)
使用格林公式得到,

$$\int_{\mathcal{M}} \varphi \frac{\partial}{\partial t} Uh d\sigma + \frac{1}{2} \int_{\mathcal{M}} (h\nabla U) . \nabla \varphi d\sigma = 0,$$
(7)

因此,获得方程(4)的弱形式

图1. 描述符构造过程

$$\int_{\mathcal{M}} \varphi \frac{\partial}{\partial t} U \,\mathrm{d}\,\mu + \frac{1}{2} \int_{\mathcal{M}} (\nabla U . \nabla \varphi) \,\mathrm{d}\,\mu = 0 \tag{8}$$

设
$$B = \{\varphi_i\}_{i=1}^n$$
,我们构造一个 $U(\mathbf{x}, \mathbf{t})$ 的近似值

 $\tilde{U}(\mathbf{x}, \mathbf{t})$ _{通过}

$$\tilde{U}(.,\mathbf{t}) \coloneqq \sum_{i=1}^{n} \alpha_{i}(\mathbf{t}) \varphi_{i}, \qquad \mathbf{t} > 0$$
(9)

把(8)中的U用U代替得到:

$$\sum_{i=1}^{n} B(\mathbf{i},\mathbf{j}) \frac{\partial}{\partial t} \alpha_{i}(\mathbf{t}) + \frac{1}{2} \sum_{i=1}^{n} L(\mathbf{i},\mathbf{j}) \alpha_{i}(\mathbf{t}) = 0$$
(10)

其中

$$B(\mathbf{i},\mathbf{j}) = \int_{\mathcal{M}} \varphi_i \varphi_j h d\sigma, \qquad (11)$$

并且

$$L(\mathbf{i},\mathbf{j}) = \int_{\mathcal{M}} (\nabla \varphi_i \cdot \nabla \varphi_j) \, \mathbf{hd} \, \boldsymbol{\sigma}.$$
 (12)

离散化(10),设N = (M;T)是一个接近M的 三角面。其中 $M:=\{x_i;i=1,...,n\}$ 是n个顶点的集 合。T是一个抽象的包含邻接信息的单纯复合。 我们选择线性独立的基函数 $B = \{\varphi_i\}_{i=1}^n$,其中 $\varphi_i(\mathbf{x}_j) = \delta_{ij}$ 在顶点 i 处等于 1,在所有其他顶点等 于 0。线性插入 1 和 0 之间所有三角形顶点我。 在所有三角形的顶点 i 在 1 和 0 之间的进行线性 插入。将顶点^{x_i}标记为^{*i*},如果 i, j,k是三角 形 T 不同的顶点, α_i , α_j , α_k 分别表示三角形 的顶点 i, j, j所对应的内角,A(T)是三角形的 面积,如图 2 所示。由于 h 是分段线性的,我们 可以在方程(11)和方程(12)中用 $h_i \varphi_i + h_i \varphi_j + h_k \varphi_k$ 替代。然后我们可以得到:

$$\nabla \varphi_i \cdot \nabla \varphi_j = -\frac{\cot \alpha_k}{2A(T)}$$
$$|\nabla \varphi|^2 = \frac{\cot \alpha_j + \cot \alpha_k}{2A(T)}$$
$$\int_T \varphi_i d\sigma = \frac{A(T)}{3}$$
$$\int_T \varphi_i^2 d\sigma = \frac{A(T)}{6}$$
$$\int_T \varphi_i \varphi_j d\sigma = \frac{A(T)}{12}$$
$$\int_T \varphi^3 d\sigma = \frac{A(T)}{10}$$
$$\int_T \varphi^2 \varphi_j d\sigma = \frac{A(T)}{30}$$
$$\int_T \varphi_i \varphi_j \varphi_k d\sigma = \frac{A(T)}{60}$$

三角形 T_k 的方程h的平均值用 h_{T_k} 来表示。用 $N_e(\mathbf{i})$ 表示顶点i的相邻顶点。用 $j \in N_e(\mathbf{i})$ 表示三 角形 T_α , T_β 有点(\mathbf{i} , \mathbf{j})作为一条边, α 和 β 作 为 T_α 和 T_β 对应点(\mathbf{i} , \mathbf{j})的内角。然后

$$B(\mathbf{i},\mathbf{j}) = \begin{cases} (\mathbf{h}_{i} + \mathbf{h}_{i}) \frac{A(\mathbf{T}_{\alpha}) + A(\mathbf{T}_{\beta})}{\mathbf{h}_{T_{\alpha}} A(\mathbf{T}_{\alpha}) + \mathbf{h}_{T_{\beta}} A(\mathbf{T}_{\beta})} & \text{if } j \in N_{e}(\mathbf{i}) \\ \frac{\sum_{k \in N_{e}(\mathbf{i})} A(\mathbf{T}_{k}) (\frac{h_{i}}{15} + \frac{h_{T_{k}}}{10}) & \text{if } i = j \end{cases}$$
(13)

其中 T_k 的顶点 i 和 k 是逆时针导向的, 当 i 和 j 是不相邻的顶点时, B(i, j) = 0。同样的, L(i, j)通过下面式子得到:

$$\mathbf{L}(\mathbf{i},\mathbf{j}) = \begin{cases} -\frac{h_{T\alpha}\cot\alpha + h_{T\beta}\cot\beta}{60} & \text{if } j \in N_e(\mathbf{i}) \\ \sum_{k \in N_e(\mathbf{i})} \mathbf{L}(\mathbf{i},\mathbf{k}) & \text{if } i = j \end{cases}$$
(14)

在任何情况下L(i, j) = 0。

计算方程 4,我们需要考虑广义特征系统 问题(L,B)的{ λ_i, ϕ_i } $_{i=1}^n$,并且满足条件 $L\phi_i = \lambda_i B\phi, i = 1, ..., n$ 。假设拉普拉斯算子的特征向 量{ ϕ_i } $_{i=1}^n$ 是 ℝⁿ 和($\tilde{U}(\mathbf{x}, \mathbf{t})$) $_{i=1}^n \in \mathbb{R}^n$ 的基础,对于任 何的 $t \in \mathbb{R}^+$,表达式 $\tilde{U}(., \mathbf{t}) \coloneqq \sum_{i=1}^n a_i(\mathbf{t})\phi_i$ 在 $a = (\mathbf{a}_i(\mathbf{t}))_{i=1}^n$ 是未知向量。

通过以下公式求解 $a_i(t)$,

$$\mathbf{a}_{i}(\mathbf{t}) = \exp(-\frac{1}{2}\lambda_{i}\mathbf{t})\left\langle u(\mathbf{x}), \boldsymbol{\phi}_{i}\right\rangle_{B}$$

其中 $u(\mathbf{x})$ 的初始值是 $U(\mathbf{x},\mathbf{t})$ 。然后

$$\tilde{U}(.,t) \coloneqq \sum_{i=1}^{n} \exp(-\frac{1}{2}\lambda_{i} t) \langle u(\mathbf{x}), \phi_{i} \rangle_{B\phi_{i}}, \quad (15)$$

或者矩阵形式

$$U(.,t) \coloneqq \phi D(t) \phi^T B u(\mathbf{x})$$
(16)

其中 $\phi = [\phi_1, \phi_2, ..., \phi_n]$,

 $D(t) = diag(exp(-\frac{1}{2}\lambda_{1} t), exp(-\frac{1}{2}\lambda_{2} t), ..., exp(-\frac{1}{2}\lambda_{n} t))$ 然后我们可以得到热内核

 $K(\mathbf{x}, \mathbf{y}, \mathbf{t}) \coloneqq \boldsymbol{\phi} \mathbf{D}(\mathbf{t}) \boldsymbol{\phi}^T \boldsymbol{B}$ (17)

然后可以得到加权热内核信号

 $K(\mathbf{x}, \mathbf{y}, \mathbf{t}) \coloneqq B\phi^2 \operatorname{diag}(\mathbf{D}(\mathbf{t}))$ (18)

热内核信号在[27,7,6]已经介绍了,它 是基于扩散尺度空间分析的一个固有的局部形 状描述符。这里我们引入加权的信号,通过将每 个顶点的颜色是信息作为权值h(如上所述)。

3. 描述符的提出

在本节中,我们提出一个形状建模和检索使

用加权热内核信号的方法。图1显示了提出的描述符的建设步骤。提出的描述符是基于 W-HKS 计算所有顶点在不同的时间尺度上的 BoF 表示。我们提出一个新的方法来实现 HK 的尺度不变性,最后表现的是抗噪性。规模标准化步骤应用于W-HKS,解释如下小节。我们所提出的描述符是紧凑的,计算时高效的。

3.1. 标度不变性

形状描述符的尺度不变性是一个可取的属 性,可以通过不同的方法来实现:可以和大多数 特征描述符一样,通过检测规模,如在在图像分 析(例如筛选)。通过标准化 Laplace-Beltrami 特征值,使用将 HKS[7]做一系列的转换,为了避 免尺度检测问题,或者通过使用 Laplace-Beltrami 算子的局部仿射不变性,在 [22]中被提出。在这项工作中,我们提出一个基 于简单操作的局部比例标准化。在[7]中提到, 形状缩放因子 β 导致K(x,t) 变成 $\beta^2 K(x,\beta^2 t)$ 。 因此,一系列的转换被应用 W-HKS,如下。从每个 点 x 开始, WHKS 是在时间^{(t= α^T)</sub>用对数进行采 样和方程}

$$k_{T} = K(\mathbf{x}, \boldsymbol{\alpha}^{T})$$
(19)

形成的。β形状的缩小会导致时移,

 $s = 2\log_{\alpha}\beta$, β^2 振幅的减小。即

$$k_{\tau}' = \beta^2 k_{\tau+s} \tag{20}$$

我们建议直接将 k_{τ} 做傅里叶变换,,类似的方法[1]。

$$K'(\omega) = \beta^2 K(\omega) \exp(j2\pi s).$$
 (21)

可得傅里叶变化的振幅,

(22)

 $\left| K'(\omega) \right| = \beta^2 \left| K(\omega) \right|$

增加的常数 β²的作用是通过标准化 |K (ω) 来消除。FT 第一个重要的部分振幅(我们通常用 20) 是用来构造尺度不变的形状描述符。这种方 法消除了缩放效应, 而无需使用噪声敏感操作或 对数对数变换, 这两个在[7]中都使用过。通过 实验比较两个方法对噪声的敏感性, 与之前的方 法相比, 我们的方法性能相当的优越。

3.2. 形状/颜色描述符

我们建议构建描述符如下:根据方程(18), W-HKS 描述符计算每个三角网络。我们计算了一 个形状在三个标准化颜色通道(RGB)的所有点的 W-HKS。颜色信息是每个顶点上的权值 h 如图 2 所示。中间:权重的定义, h_i, h_i, h_k ,以及 h_{T_a} 。 算出在不同尺度上的 W-HKS 值, 根据步骤 1/16, 使用对数尺度空间与基α=2和τ(范围0.01到8) 在每个彩色带。调查其他可能的已经完成的颜色 空间, 使用 RGB 核准比其他颜色空间的更好的性 能,使用三个灰度级证明更好的表现。然后应用 规模规范化,步骤在3.1节已经解释过了。只考 虑 FT 前 20 有效的部分, 那么 n 个顶点的描述符 的大小将是n×20。然后我们使用特征包(BoF) 来表示形状作为一个特征向量。使用相同的词汇 量大小为 64 创建包的特征。因此,对任何三维 形状,特征向量的大小是 64×3。

4. 实验结果

为了测试该方法的性能,我们采用 SHREC'13数据集[8]和SHREC'14个数据集[3]。 SHREC'13数据集是一组由240纹理形状组成, 组织在10个类,每个都有24个模型。每一个类 (人类,四条腿的动物,花瓶等)包含六个零模型, 即两个基础网格被赋予三种不同的纹理。每个空 形通过四个转换修改,其中包括两个 non-metric-preserving的变形,一个非刚性的 变形,一个附加的高斯噪声扰动。有变换应用于 对十类不同强度等级。在不同的类中相同的纹理 可以共享模型,参见图 3。SHREC'14数据集是由 572 水密网格模型组成,分为13个纹理和十六个 几何类。每个类包含十二个空模型,对应于四个 网格具有三个不同的基地纹理。三个转换应用于 每个

空的形状。三个转换随机组合成几何变形(重采 样,添加高斯噪声,一个仿射变形,和两个非等距 变形)与一个纹理(闪电/变暗,拓扑结构的变形 模式,仿射转换 RGB 通道)。样品的几何类数据集 给出了图 4 所示。

我们把我们的方法和变形 3D 模型[8]检索竞 中的四个最佳方法进行比较:一种方法是基于结 合了颜色直方图的热内核的尺度不变性和颜色 加权的直方图区域投影变换(G1)。还有一个方法 是基于 RGB 直方图(V2)[8]测地距离矩阵合并形 状描述。

我们也和 PHOG 方法得到的结果和我们的进行比较。我们使用精确率与反馈率曲线,平均最近邻 (NN),第一层(英尺)、二线(ST)和平均动态召回 (ADR) [26]等评价措施。计算这些评价措施,如果两个对象分享几何和纹理信息,那我们假设这两个对象属于同一个类。最后得分是所有可能的查询的平均值,因此总是小于 1。

表1列出了 SHREC'13 数据集中的所有类的 平均措施,表2列出了 SHREC'14 数据集中的所有 类的平均措施。表中比较将该描述符(W-HKS1)与 (A2)基于结合颜色直方图的尺度不变的热内核 进行了比较。神经网络和 ADR 措施证明该描述符 具有更好的性能,因为它将颜色以及几何信息进 行编码。

另一个版本,叫做(W-HKS2),提议的描述符 是由在原有的描述符(W-HKS1)上附加了颜色直 方图。表3,列出了SHREC'13数据集的平均措施。 表中将该描述符(W-HKS2)与五种不同的方法进 行了比较。最高的措施(粗体)清楚地表明,该描 述符具有最好的性能。

图 5 显示了 SHREC' 13 数据集[8]的一些检 索结果。图 6 显示了 SHREC' 14 数据集[3]的一 些检索结果。模型从左到右是有序的。第一列代 表查询模型。每个查询检索到的对象排名从左到 右是基于之间的距离测量(L1-Norm)查询和数据 集的各种形状。我们只显示前 15 个检索模型。 这些数据清楚地表明这个方法高的检索

* * * * * * * * FFFAAA ****** <u>****</u>

图 3. SHREC'13 的 4 种不同样本的基准类[8],并且 需要具有不同结构和变形。对于每个 Null shape,有所改 变的地方,包括非刚性的变形、、非度量保留变形、附加的 高斯噪声扰动

图 4. SHREC'14 的 8 种不同样本的基准类[3]

Run	NN	1-Tier	2-Tier	ADR
A2	0.508	0.561	0.730	0.380
W-HKS1	0.7765	0.5350	0.6458	0.4047

表1. 在 SHREC'13 数据集上,比较该描述符(W-HKS1) 与基于尺度不变的结合颜色直方图的热内核的A(2)。

率。可以发现,该方法先用类似的结构检索 相似的形状。

图.7 用 SHREC' 13 数据集的精确率与反馈 率曲线显示所有方法性能的平均值。在实验中曲 线下面的面积越大,性能越好。该图显示相对于 其它五种方法该描述符确实具有最高性能。

5. 结论

本文解决的问题是变形三维形状的表示。我 们提出了一种新的方法,它是基于加权的形状匹 配和检索的热内核信号(W-HKS)。我们建议使用 颜色信息作为形状流的权重。我们还对加权流热 扩散提出了一个新颖的构想。

<> *M M M* > > > *∮ ∮* > *∮ ∦* </> </> *AAJAAJA~ *** KAMMAN ANA ASAJA ~~~~~~~~ A a a a a g a g a g A A J A J A J XADAAAAAAA JAAAA DA R & A A A A A M A A A A J A A

图 5. SHREC'13 数据集上形状检索结果。左:查询。右:前 15 次使用的 W-HKS2 描述符的匹配。

	[Relevant	1	I	Highly Relevan	t	
Run	NN	1-Tier	2-Tier	NN	1-Tier	2-Tier	ADR
HKS+Color Hist	0.735	0.408	0.521	0.123	0.228	0.351	0.206
W-HKS1	0.817	0.296	0.396	0.443	0.248	0.336	0.236

表 2. 在 SHREC'14 数据集上,比较该描述符(W-HKS1)与基于尺度不变的结合颜色直方图的热内核的 A (2)。

1	Run	NN	1-Tier	2-Tier	ADR
	A2	0.508	0.561	0.730	0.380
ŀ	G1	0.788	0.658	0.748	0.470
ł	G2	0.898	0.733	0.893	0.508
ć	V2	0.879	0.764	0.904	0.520

数字图象处理作业 The task of Digital Image Processing

PHOG	0.951	0.773	0.899	0.534
W-HKS2	0.9242	0.8338	0.9257	0.5701

表 3. 列出了 SHREC'13 数据集的平均措施。表中将该描述符(W-HKS2)与五种不同的方法进行了比较。

后我们在加权热内核提出一个新的基于有限元 的离散化方法。我们还提出了一种新的方法引入 加权的尺度不变性热内核信号。特征包(BoF)方 法用于构造紧凑的信息型形状描述符。最后,加 权热内核信号是用作形状描述符。我们的实验结 果表明,该描述符可以在 SHREC'13 和 SHREC'14 数据集上实现高性能。提出的方法在变形形状表 示和检索上优于其它最先进的方法(五种不同方 法)。不同的评估措施核准了提出的框架具有高 精度。

图 6.SHREC's 数据集的形状检索结果 左图:查询。右图:使用 W-HKS2 描述符匹配的前 15 个图形。

Figure 7. Shape retrieval results of SHREC'13 dataset. Precision-recall curves for all methods.

图 7. 形状检索结果 SHREC'13 数据集的形状检索结果

参考文献

[1] M. Abdelrahman, M. T. El-Melegy, and A. A. Farag.
3d object classification using scale invariant heat kernels with collaborative classification. In NORDIA ECCV Workshops, pages 22 - 31, 2012.

[2] M. Ben-Chen and C. Gotsman. Characterizing shape using conformal factors. In 3DOR, pages 1 - 8, 2008.

[3] S. Biasotti, A. Cerri, M. Abdelrahman, M. Aono,
A. B. Hamza, M. T. El-Melegy, A. A. Farag, V. Garro,
A. Giachetti, D. Giorgi, A. Godil, C. Li, Y. Liu,
H. Y. Martono,

C. Sanada, A. Tatsuma, S. Velasco-Forero, and C. Xu.

Shrec' 14 track: Retrieval and classification on textured 3d

models. In Eurographics Workshop on 3D Object Retrieval, Strasbourg, France, 2014. Proceedings, pages111 - 120,2014.

[4] S. Biasotti, A. Cerri, D. Giorgi, and M.
Spagnuolo. Phog: Photometric and geometric functions for textured shape retrieval. Comput.
Graph. Forum, 32(5):13-22, 2013.

[5] A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein,

and R. Kimmel. Analysis of two-dimensional non-rigid

shapes. International Journal of Computer Vision, 78(1):67 - 88, 2008.

[6] A. M. Bronstein, M. M. Bronstein, L. J. Guibas, and M. Ovsjanikov. Shape google: Geometric words and expressions for invariant shape retrieval. ACM Trans. Graph., 30(1):1, 2011. [7] M. M. Bronstein and I. Kokkinos.
Scale-invariant heat kernel signatures for non-rigid shape recognition. In CVPR, pages
1704 - 1711, 2010.
[8] A. Cerri, S. Biasotti, M. Abdelrahman, J.

Angulo, K. Berger, L. Chevallier, M. T. El-Melegy, A. A. Farag, F. Lefebvre, A. Giachetti, H. Guermoud, Y.-J. Liu, S. Velasco-Forero, J.-R. Vigouroux, C.-X. Xu, and J.-B. Zhang. Shrec' 13 track: Retrieval on textured 3d models. In 3DOR, pages 73-80, 2013.

[9] P. Daras and A. Axenopoulos. A 3d shape retrieval framework supporting multimodal queries. International Journal of Computer Vision, 89(2-3):229 - 247, 2010.

[10] A. Elad and R. Kimmel. Bending invariant representations for surfaces. In CVPR (1), pages 168-174, 2001.

[11] M. Elad, A. Tal, and S. Ar. Content based retrieval of vrml objects - an iterative and interactive approach. Pages 97 - 108, 2001.

[12] K. Gebal, J. A. Bærentzen, H. Aanæs, and R. Larsen. Shape analysis using the auto diffusion function. Comput. Graph. Forum, 28(5):1405 - 1413, 2009.

[13] A. Grigoryan. Heat kernels on weighted manifolds and applications. Cont. Math. 398, pages 93 - 191, 2006.

[14] E. P. Hsu. Stochastic Analysis on Manifolds. American

Mathematical Society, 2002.

[15] J. A. Iglesias and R. Kimmel. Schrodinger diffusion for "shape analysis with texture. In ECCV Workshops (1), pages 123 - 132, 2012.

[16] A. E. Johnson and M. Hebert. Using spin images

数字图象处理作业 The task of Digital Image Processing

for efficient object recognition in cluttered 3d	41 (10) : 739 - 755, 2009.
scenes. IEEE Trans. Pattern Anal. Mach. Intell.,	[24] I. Rubinstein and L. Rubinstein. Partial
21 (5) : 433 - 449, 1999.	Differential Equations in Classical Mathematical
[17] M. M. Kazhdan, T. A. Funkhouser, and S.	Physics. Cambridge University Press, 1998.
Rusinkiewicz.Symmetry descriptors and 3d shape	[25] R. M. Rustamov. Laplace-beltrami
matching. In Symposium on Geometry Processing,	eigenfunctions for deformation invariant shape
pages 117 - 126, 2004.	representation. In Symposium on Geometry
[18] A. Kovnatsky, M. M. Bronstein, A. M. Bronstein,	Processing, pages 225-233, 2007.
and	[26] P. Shilane, P. Min, M. M. Kazhdan, and T. A.
R. Kimmel. Photometric heat kernel signatures. In	Funkhouser. The princeton shape benchmark. In SMI,
Scale	pages 167 - 178, 2004.
Space and Variational Methods in Computer Vision,	[27] J. Sun, M. Ovsjanikov, and L. J. Guibas. A
pages	concise and provably informative multi-scale
616 - 627. Springer, 2012.	signature based on heat diffusion. Comput. Graph.
[19] A. Kovnatsky, D. Raviv, M. M. Bronstein, A.	Forum, 28(5):1383-1392, 2009.
M. Bronstein, and R. Kimmel. Geometric and	[28] J. W. H. Tangelder and R. C. Veltkamp. A survey
photometric data fusion in non-rigid shape	of content based 3d shape retrieval methods.
analysis. Numerical Mathematics: Theory,Methods	Multimedia Tools Appl.,39(3):441-471, 2008.
and Applications (NM-TMA), 6(1):199-222,2013.	[29] R. Toldo, U. Castellani, and A. Fusiello.
[20] S. Lafon, Y. Keller, and R. R. Coifman. Data	Visual vocabulary signature for 3d object
fusion and multicue data matching by diffusion maps.	retrieval and partial matching. In 3DOR, pages
IEEE Trans. Pattern Anal. Mach. Intell.,	21 - 28, 2009.
28 (11) : 1784 - 1797, 2006.	[30] A. Zaharescu, E. Boyer, and R. Horaud.
[21] YJ. Liu, YF. Zheng, L. Lv, Y. Xuan, and	Keypoints and local descriptors of scalar
X. Fu. 3d model retrieval based on color + geometry	functions on 2d manifolds. International Journal of
signatures. The Visual Computer, 28(1):75-86,	Computer Vision, 100(1):78 - 98,2012.
2012.	
[22] D. Raviv, M. M. Bronstein, A. M. Bronstein,	
R. Kimmel, and N. A. Sochen. Affine-invariant	
diffusion geometry for the analysis of deformable	E
3d shapes. In CVPR, pages 2361 - 2367, 2011.	
[23] M. Reuter, FE. Wolter, M. E. Shenton, and	
M. Niethammer. Laplace-beltrami eig <mark>e</mark> nvalues and	
topological features of eigenfunctions for	
statistical shape analysis. ComputerAided Design,	