

No: _	01	
姓名:_	高俊龙	
学号:	2013302571	
班号:	10011305	

深度轮廓:正数共享损失轮廓侦察的深度卷积特性

申伟¹,王星光²,王艳³,白项²,张志江¹ ¹上海大学特种光纤与光接入网重点实验室 ²华中科技大学电子信息与通信学院 ³南洋理工大学对象搜索实验

摘要

轮廓检测是用作各种计算机视觉 任务的基础如图像分割和目标识别。 而我们的主流工作致力于解决这个问 题关注设计工程梯度特性,在这项工 作中,我们表明轮廓检测精度可以改 善但可以不是通过卷积神经网络(细 胞神经网络)得到的。我们通过自定 义分区轮廓(正)数据转换成子类和 装配不同的模型参数子类来制定培训 战略,当然我们不是使用网络作为一 个黑盒子特征提取。一个新的命名为 共享正损的损失函数,他的每个子类 股共享整个大类的损失,我们建议学 习他的参数。相对于 SOFTMAX 损失 函数,我们所提出的函数引入了额外 的正则化来强调的积极和消极的类损 失,这有利于探索更具有特征的损失。 我们的实验结果证明,学习深度特性可 以实现伯克利分割数据集和水准 (BSDS500) 的最佳性能和获得竞争交 叉数据泛化结果 NYUD 数据集。

1. 引言

在本文中,我们研究了在计算机 视觉自然图像轮廓检测中的经典和根 本的问题。许多任务是以正确地检测 物体轮廓为基础的任务,例如图像分割 [2],场景理解[3]和物体检测[17,30, 48]。

轮廓检测是相当具有挑战性的,比 边缘检测更加困难。根据马丁的定义 [34],后者的目的是检测在亮度,颜色 和质地的特性的变化;与此相反,前者 的目标是寻找从一个物体或表面到另 一个像素所有权的改变。因此,轮廓 涉及对象的概念,其投射一个障碍给 我们:如何辨别杂乱纹理引起的变化 和那些对应于对象的边界的变化?许 多研究人员倾注了自己的努力解决这 一问题,并取得了的进展[34,32,38, 2,39,30,11,23,12]。然而,算法 和人类注释给定轮廓检测观察到了明 显的性能差距。用于轮廓检测的传统 框架设计了多种用于每个图像像素梯 度特征,随后通过学习二元分类,以 确定一个图像的像素是否为轮廓。在 过去的十年中,虽然手设计的功能被 广泛应用同时支持标准的轮廓检测指 标排名靠前的算法[35,2],但我们不 能忽视一个事实,他们没有足够的辨 别能力去区分语义的目标边界和低级 影像中的突变。通过深度神经网络的 广泛运用,一些研究人员尝试学习深 度特性来解决该轮廓与非轮廓分类问 题[23, 19, 33]。对于许多计算机视觉 任务的印象深刻的表现已经证明,深 层神经网络输出的深层功能是强大的 [1,37],而且将取代传统的手工设计的 功能,例如像 SIFT[31]和 HOG[9]。因 此,引入深度学习技术去解决轮廓检 测问题是合理可行的。然而,学会如 何辨别和表示对深为特征轮廓检测来 说是不简单的。深度学习用于轮廓检 测的当前使用情况是,采取深网络作 为黑箱模型了解轮廓[23]或本地等高 线图[19]的概率为每个像素来得到数 据。通过这样的方式,深度网络在对 一个极其复杂的建筑研究时其灵活性 可能是不足的。为什么深度网络可以 在如此多的识别任务中脱颖而出却被 轮廓甄别拒绝呢? 原因是轮廓对于局 部来说是巨大的,因为他包含很多类 型诸如直线, 平行线, T 连接和 Y 结 的模式。尽管深度网络功能十分强大 但是把这么大的变化的数据视为一个 类是不可取的。

我们的目标是学习著名的深卷积 神经网络(细胞神经网络)[18,42, 26],了解了轮廓检测判别功能。但是, 我们不只是用CNN作为一个黑盒子来 进行特征提取, 而是考虑轮廓的内在 属性得到它。我们强调以下两点:(1) 分区块轮廓的紧凑集群根据其固有的 结构是必要的有效的 CNN 模型。这样 的集群过程中导致轮廓补丁中级形状 表示。所形成的簇称为形状的类和每 个都通过一个形状标签分配。不同形 状的拟合轮廓数据通过不同的模型参 数是被分而治之策略拟合的[4].从而缓 解由于数据的多样性培训困难。(2) 如何界定CNN的损失函数是学习轮廓 检测判别显著功能。上述聚类处理转 换二元分类问题(即预测图像补丁是 否属于轮廓或非轮廓)到多类问题(即 预测图像补丁是否属于各形状类或负

类),这似乎可以通过最小化损失 SOFTMAX 在标准 CNN 的使用损失函 数得到很好的解决。然而, SOFTMAX 功能不利条件是相同的,这是不适合 学习的轮廓补丁和补丁背景之间的不 同特性的。因为,对于轮廓检测,形 状类之间的错误分类是可忽略的,而 一个轮廓补丁被分类为背景之一是相 当大的误差,或反之亦然。因此,对 于积极的和消极的损失应在训练被强 调。基于这种观察,我们定义一个新 的结合轮廓与非轮廓与 SOFTMAX 损 失的额外损耗目标函数。作为该功能 的正损失其他所有类可以共享,我们 将其命名为积极损失。额外的损失带 来更好的正规化的形式从而带来更好 的轮廓特征的了解。随着深学特征, 轮廓检测可以通过将其送入任何分类 后跟一个标准的非最大抑制方案进行 [6]。

2. 相关工作

轮廓检测: 轮廓检测通常被认为 是一个监督学习问题。在先驱工作 Konishi et al。[24],轮廓检测是制定歧 视任务指定的似然比检验的滤波器。 Martin 等人[34]精心设计的功能学习 分类的特点结合起来,在亮度,色彩, 以及与自然边界相关的纹理特征的变 化分类。利用美元等[10]补丁丰富的功 能提高概率树[46]检测轮廓。仁和博 [39]发现稀疏编码梯度功能,它是有效 的轮廓检测。最近,一个中等特征命 名的草图令牌和随机基于结构分类, 分别在[30] [11]提出。除了监督学 习,[2],Arbelaez等人结合当地多个信号 变成一个全球化框架基于谱聚类的轮 廓检测。

深度学习: 深度学习方法已经在 计算机视觉的各种应用,如图像分类 [25],目标检测[20],图像标记[15], 以及超高分辨率[14]上应用并获得巨 大成功。深卷积神经网络(细胞神经 网络)与 GPU 实现和纠正学习和监督 分类和辍学[44]是流行的功能。受限玻 尔兹曼机(RBM),自编码[47]及其变 体是流行的无监督的深度学习。

轮廓检测的深度学习: 正如我们 所知道的这里有两篇用于轮廓检测的 论文。第一篇是 Kivinenet 等人[23]写 的使用 RBM 技术和复杂分类器结合 得到每层的值。第二篇是 Ganin 和 Lempitsky 发表的,特性的图像补丁是 学会了使用传统的 CNN 然后特性映射 到一个注释边缘地图使用 kd tree。这 两个方法的不同,我们学会利用形状 标签和 CNN 的一个新颖的损失来表示 功能。

3. 数据准备

在本节中,我们将介绍如何准备 训练验证数据,设置训练 CNN 模型。 就拿 BSDS500 数据集作为一个例子, 该 BSDS500 数据集包含 200 训练,100 验证和 200 个测试图像。每个图像都 有手标记的地面真实轮廓。继[30],我 们得到来自代表手标记的地面真实轮 廓二值图像中提取的集群补丁的形状 类。只有补丁的中心是通过轮廓标记 用于集群的。由于 CNN 的具有较强的 学习处理更多的信息的能力,在我们 的实验中我们使用定制的为45×45尺 寸的像素的(而不是35×35[30])补丁。 NS 有较强的学习处理信息的能力。这 个聚类过程导致图形 K 形类,它们的 图案从直线到更复杂的结构,如在图1 看到的。

图 1: 某些选定的形状类的可视化

学会了 K 形类,我们可以给数据 集中的 x 指定一个标签 y。如果 x 是一 个轮廓补丁(我们设定最大斜率等于 允许的贴片中心之间缩略图距离轮廓 3 像素),它的类标签由形状聚类结果 供 给 , 即 它 的 类 标 记 $y=k(k \in \{1,...,K\})$ 如果从手标记地面 实况值图像中提取相应的补丁则属于 第 k 个形状类。否则,如果 x 是一个 背景贴剂,它的标签由 y=0 分配。为 了标记简单,轮廓补丁和补丁程序的 背景也被在本文其余部分称为的积极 补丁和消极补丁。

我们从训练集中的 BSDS500 数据 集,其中采样,积极消极的补丁的数 量相等为 2,000,000 图像块,以形成用 于学习我们 CNN 模型的训练数据。在 测试 CNN 模型时,我们也使用了跟 BSDS500 数据集中相同的 2,000,000 做对比。

4. 学习 CNN 深度特征

在这部分,我们描述了如何通过 我们的CNN模型学习轮廓检测。首先, 我们介绍我们的 CNN 模型的体系结 构。然后,我们讨论如何在们的任务 定义适当的损耗函数。

4.1 CNN 架构

我们培训 CNN 在一个多级分类任 务,即图像补丁分类到形状类或消极 类。图 2 描绘了 CNN 模型, 含六层与 要学习的参数的整体架构:前四个是卷 积后两个是全接。只有卷积和完全连 接层含有可学习的参数,而其他参数 都是免费的。我们的 CNN 的输入尺寸 是 45×45,其由第一卷积层(COV1) 与尺寸 5×5×3 的 32 粒的 2 个像素的 填充过滤的3通道(RGB)图像补丁。 所得45×45×32的特征图,然后按顺 序提供给本地响应正常化层(LRN1) 和其上的 3×3 的空间的街区中的 2 个 像素的步幅最大池层 (MAXP1)。然后 MAXP1 的输出被传递到所述第二卷 积层(COV2)。除了滤波器内核的数 量,参数配置的四个卷积层是相同的。 每个卷积层由整流线性单位(ReLU) 组成,随后是一个 LRN 和 MAXP,除 了最后一个,其他都施加的 MAP。卷 积层是 CNN 的核心,提供各种特征图 谱[13]。而 max-pooling 层是使得激活 功能强劲的轻微变化的轮廓位置。第 四最大值-池层(MAXP4)的输出被馈 送到包括一个 ReLU 的第一完全连接 层(FC1)。全层的每个输出单元连接 到输入节点,它能够捕获特性之间的相

关性激活遥远地区的图像补丁[45],这 样像雄蕊的边界在图 2 中的示例图像 补丁。为减少过度拟合的风险,我们 在 FC1 使用差[25, 44], 它由设置以概 率 0.5 到零每个神经元节点的输出。 FC1 的在我们的 CNN 的输出将被用作 用于轮廓检测,这是一个 128 维特征 向量的深度特征。我们还可以使用更 多的在这一层单位来形成高维的特征 向量。然而,这将导致重计算负担。 在一个标准的有线电视新闻网,最后 完全连接的层的输出将被馈送到一个 SOFTMAX 分级以产生过类标记的分 布。在我们的例子里假设我们有 K = 50 形状类, 然后是 CNN 的最后一 层的单位数量应该是 51。根据每一层 的参数配置, CNN 的架构可以简明地 通过层符号与层大小描述:

 $\begin{array}{l} \text{COV1}(45\times45\times32)\rightarrow\text{LRN1}\rightarrow\text{MAXP1}\rightarrow\\ \text{COV2}(22\times22\times48)\rightarrow\text{LRN2}\rightarrow\text{MAXP2}\rightarrow\\ \text{COV3}(10\times10\times64)\rightarrow\text{LRN3}\rightarrow\text{MAXP3}\rightarrow\\ \text{COV4}(4\times4\times128)\rightarrow\text{MAXP4}\rightarrow\text{FC1}(128)\rightarrow\text{FC2}(101). \end{array}$

需要注意的是,在我们的 CNN 的 体系结构中的层的数目小于用于图像 的通用一网通 LSVRC[5],如轮廓总是 由一个本地图像补丁具有比一般对象 尺寸较小所表示。从我们的经验看到 卷积层足以捕捉轮廓和背景斑块之间 的区别信息。

4.2 正面分享损失函数

训练一个标准的 CNN 的目标是概率最大化的正确分类,这是通过将 softmax 损失最小化来实现的。给出其 中含有^m 图像补丁训练集:

图 2. 我们的 CNN 的架构的图示,其明确地显现每个网络层的尺寸。由于篇幅有限,我 们只显示与可学习有关的参数层。卷积层由蓝色方形表示,而完全连接的是由蓝点标示。大 和小的淡红色区块分别描述卷积内核和结果。

 ${x^{(i)}, y^{(i)}}_{i=1}^{m}$,其中, $x^{(i)}$ 是第 i 个图象 贴片和 $y^{(i)} \in {0, 1, ..., K}$ 是它的类的标 签。如果 $y^{(i)} = 0$,则 $x^{(i)}$ 是消极的的补 丁;如果 $y^{(i)} = k > 0$,则 $x^{(i)}$ 是一个正贴 片 和 属 于 第 K 形 状 类 。 令 $(a_{j}^{(i)}; j = 0, 1, ..., K)$ 为 FC2 中j对 $x^{(i)}$ de 输出。 $x^{(i)}$ 的概率由下式给出:

$$p_{j}^{(i)} = \frac{\exp(a_{j}^{(i)})}{\sum_{l=0}^{K} \exp(a_{l}^{(i)})}$$
(1)

在一个标准的 CNN 模型里, FC2 的输 出是供给(K+1)SOFTMAX, 它旨在最 小化以下损失函数:

$$J_0 = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{j=1}^{K} 1\left(y^{(i)} = j \right) \log p_j^{(i)} \right] \quad (2)$$

其中 1()表示为指示函数。该 SOFTMAX 损失函数对每个类的分类 错误等价的。然而,在我们的情况下, 估计正贴剂的标签是一个错误的非零 标签并不是一个重大的错误,因为它仍 然是作为一个积极的预测。也就是说, 零标签和非零标签之间通过不正确的 估计引起的损耗更应引起我们的关 注。为此,我们添加一个新的术语来 规范损失:

$$J = J_0 - \frac{1}{m} \left[\sum_{i=1}^m \lambda \left(\mathbf{1}(y^{(i)} = 0) \log p_0^{(i)} + \sum_{j=1}^K \mathbf{1}(y^{(i)} = j) \log(1 - p_0^{(i)}) \right) \right],$$
(3)

其中 λ 是一个控制参数。当 λ 较小时, 式 3 往往是 SOFTMAX 损失函数;而 当 λ 越大,形状分区的效果变弱,式 3 趋于用于寻址二元分类问题,轮廓为 相对于非轮廓的目标函数。除非另有 规定,否则我们设置 λ =1 在我们所有 实验的默认值。公式 3 告诉我们,我 们应该通过不同模型参数适应不同形 状类的数据,因为它们是在特征空间 是不同的;当计算分类损失的时候,我 们不能把他们当作"绝对"不同的类, 因为它们都属于积极类。我们称公式 3 共享正损失函数,对于正类的损失每 个形状类之间共享。应用标准[41,27] 优化网络的参数,计算偏导数的新损失 (5)

FC 的输出 w.r.t., $(a_{j}^{(i)}; j = 0, 1, ..., K)$,是 必需的。式中的第一项,公式 3 是标 准 SOFTMAX 损失,其衍生物在文献 中已经已经提供。其余的是要获得的 第二项 w.r.tde $a_{0}^{(i)}$ 和 $a_{l}^{(i)}(l=1,...,K)$)的 偏导数。我们可以展示:

$$\frac{\partial \log p_0}{\partial a_0^{(i)}} = 1 - p_0^{(i)}, \frac{\partial \log (2 - p_0^{(i)})}{\partial a_0^{(i)}} = -p_0^{(i)},$$

$$\frac{\partial \log p_0^{(i)}}{\partial a_l^{(i)}} = -p_l^{(i)}, \frac{\partial \log (1 - p_0^{(i)})}{\partial a_l^{(i)}} = \frac{p_l^{(i)} p_0^{(i)}}{1 - p_0^{(i)}}.$$
(4)

然后将新的损失求偏导数而得到 $\frac{\partial J}{\partial a_0^{(i)}} = \frac{1}{m} \left[(\lambda + 1) \mathbf{1} (y^{(i)} = 0) (p_0^{(i)} - 1) + (\lambda + 1) \sum_{j=1}^K \mathbf{1} (y^{(i)} = j) p_0^{(i)} \right],$

和

$$\frac{\partial J}{\partial a_0^{(i)}} = \frac{1}{m} [(\lambda 1(y^{(i)} = 0) + 1) p_l^{(i)} - 1(y^{(i)} = l) -\lambda \sum_{j=1}^{K} 1(y^{(i)} = j) \left(\frac{p_0^{(i)} p_l^{(i)}}{1 - p_0^{(i)}}\right)]$$
(6)

人们可以通过验证集每个补丁分类精 度验证了 CNN 模型的有效性。然而, 对于检测问题,性能更可能与阳性和 阴性样品之间的对比来检测出来。因 此,我们定义一个对比得分作为量度。

 ${x_{v}^{(i)}, y_{v}^{(i)}}^{m}_{i=1}$ 是验证集, $p_{o}^{(i)} \in x_{v}^{(i)}$ 的概率 属于 CNN 的输出。对比得分通过下式 得到:

 $\gamma = \frac{1}{m} \sum_{i=1}^{m} \left[(l(y_v^{(i)} = 0) - l(y_v^{(i)} > 0))(p_0^{(i)} - (1 - p_0^{(i)})) \right]$ (7) 它的范围是-1到1,测量正和负样本之 间的学习模型的鉴别。我们经营的目 标损失函数按梯度随机下降(SGD), 通过设置设定为 0.001 学习速率。 100000 次迭代后,对比标准 CNN 大约 是 0.56 分,尽管我们大约是 0.59,有 0.03 的改进。

5. 实验结果

我们用卷积分析了轮廓检测的性 能。为了了解我们的 CNN 模型, 我们 采取公开修改名为"咖啡"[22]和修改 softmax 层的损失。由第一完全连接层 (FC1)输出的 128 维特征向量是我们 的特点。用于贴剂的所有像素的特征 矢量被连接到一个被结构森林分类 [11,12]来执行轮廓检测。我们通过可视 化的了解该启动功能。接下来,我们 比较的是 BSDS500 数据集[2]在国家 的最先进的轮廓检测结果。然后,交叉 验证数据集的泛化特性在 NYUD 数据 集被确定[43]。最后,我们分析参数的 影响。为结构化森林分类器,我们使 用在我们所有的实验中设置的默认参 数。

5.1 深度可视化

CNN 是有效的特征提取器是一个 常识,,看看我们观察学习数以百万计 的图像补丁仍然是必要的,它可以帮助 我们了解学习。给定一个图像,图像补 丁密集采样输入到我们的 CNN 模型, 结果由128特性的FC1地图输出特性。 我们随机选择一些具有可视化功能的 地图和图在图 3 里,令人鼓舞的是, 虽然其中一些来自致的纹理地区遭受 的噪音的影响,依然有很多是相当稀 疏可以捕捉的对象,这将有利于轮廓 检测。

5.2 BSDS500 数据集的结果

我们的大多数实验都在 BSDS500 数据集执行。该数据集的细节已经在 第3章介绍。为了评价一个轮廓检测 算法的性能,我们用到了3个标准量: 在数据集固定比例的最佳F值(ODS), 在每个图像(OIS)的数据集的最佳比 例的合计 F 值, 平均精度(AP)的全 面召回范围。我们把我们轮廓检测的 方法和其他的方法做对比,例如结构 化的边缘 (SE)[11] 及其变种 (SE-Var)[12],稀疏编码梯度(SCG)[39] 和深层神经网络预测(DeepNet)[23]。精 度/召回曲线见图4和汇总统计见表1。 我们深轮廓的方法是优于国家的最先 进的所有方法。我们比同类方法提高 了1个点的竞争率/OIS,同时可以实 现和 AP 媲美。通过比较 SE 和 SE-Var, 我们直接得出的证明是深度特点是比 手设计的功能更详细识别的,如梯度 信道特征和自相似的特性,在[11,12]. 的使用中。相较于其他处理轮廓检测 的深度学习基础的方法,我们相当强 于大盘 DEEPNET[23], 它的无监督学 习的轮廓特征,因为学习的特点与监 管提高了歧视。我们甚至胜过了 DeepNet 方法因为 DeepNet 是无监督 的学习检测方法,而我们的是有监督 的。引人注意的是,为了处理不同的 形状类的轮廓之间的转换,深度网络

图 4. 轮廓检测器上的 BSDS500 数据集评价 [2]。轮廓检测方法是根据它最好的 F-尺寸 (ODS)来归类的。我们的方法里深轮廓达 到顶级结果,并同时显示改善在多精确召回 制度的召回率和准确度。在表 1 有关于其他 两个量和方法的引用的更多细节。

旋转版本,同时预测结果被平均化并 在[23]上被增强体现出来,同时我们在 训练过程也考虑了不同形状之间的多 样性。不幸的是,深度网络的增强结 果并没有体现出来。所以,我们没有 办法表现出更多的有关不同形状效应 的细节。同时,我们的方法也比其他 深度学习方法(N-Fileds)[19]更成功 的地方,尽管他们也提出了 CNNs 模 型。CNN 模型是针对地区蜿蜒的局部 地图的, 它靠本身的模型隐式的将形 状分区。。然而,它们 CNN 的特征空 间使用最邻近搜索方法获得本地等高 线图,但是 CNN 的特征图嘈杂响应表 现不佳, 如图 3 所示。我们在这个分 类器应用随机 CNN 特性和嵌入式特征

选择机制提高了对噪声的鲁棒性。当 我们根据草图令牌[30]的定义获得形 状类时,他们之间的相当大的性能提 升证明了我们深度特性方法的优越 性。我们展示了几种获得的轮廓方法 的检测结果在表 5 中定性比较。这些 定性的例子表明,我们的方法触发了 地面真识轮廓更加有力的回应,同时 抑制了假阳性。

5.3 跨数据集泛化

某些人可能会涉及这样的失误, 了解的一个数据集深度功能应用到其 他数据集时可能会导致更高的泛化误 差。为了探讨是否有这种情况,我们 应用训练集中 BSDS500 数据集的数据 集 NYUD[43]了解深度特性。该数据集 NYUD (V2)包括 1449 双 480×640

图 3.左: 颜色测试图像, 地面实况轮廓以黑色曲线显示。右: 随机抽取深层特征图。

表 1. BSDS500 数据集轮廓检测结果[2]

	ODS	OIS	AP
Human	.80	.80	-
Canny [6]	.60	.63	.58
Felz-Hutt [16]	.61	.64	.56
Normalized Cuts [8]	.64	.68	.45
Mean Shift [7]	.64	.68	.56
Gb [29]	.69	.72	.72
ISCRA [40]	.72	.75	.46
gPb-owt-ucm [2]	.73	.76	.73
Sketch Tokens [30]	.73	.75	.78
DeepNet [23]	.74	.76	.76
SCG-[39]	.74	.76	.77
PMI+sPb [21]	.74	.77	.78
SE [11]	.74	.76	.78
SE-Var [12]	.75	.77	.80
N ⁴ -Fields [19]	.75	.77	.78
DeepContour (ours)	76	78	80

分辨率的颜色和深度帧和地面实况语 义区。此数据集是从各种室内场景组 成的图像,而在 BSDS500 图像主要示 出了室外场景。因此,在这两个数据 集的对象完全不同。我们使用由[39] 表 2. 跨数据集泛化结果。训练/测试得出训 练/测试所用的数据集。

	ODS	OIS	AP
gPb [2] (NYU/NYU)	.51	.52	.37
SCG [39] (NYU/NYU)	.55	.57	.46
SE [11] (BSDS/NYU)	.55	.57	.46
DeepContour (BSDS/NYU)	.55	.57	.49

中提出的相同的实验装置,它选择训练检测的图像为 60%的图像和 40%以缩小为 320×240 分辨率的图像。由于我们深度特性是从彩色图像 BSDS500 数据了解到,所以我们只将 它们应用到 NYUD 数据集的彩色图像。为了比较其效果,我们在表 2 列出了我们方法和 SE[11]的跨数据集概 括结果(从模型上的 BSDS500 数据集 到 NYUD 数据集)。GOP 和 SCG 的结 果被用于参考,而它们是由在 NYUD 数据集训练得到。虽然监督学习通常

减少一般性的博学深的特点实现了比 SE 相当或更好的跨数据集的泛化的结 果,即使是在 NYUD 数据集中培训也 显著优于 GPB-OWT-UCM。选择的定 性的例子在图 6 中可以看到并且从 BSDS500 数据集得到我们深度轮廓特 征,这证明我们深度特性是一般和便携 式的轮廓表示。

5.4 参数探讨

我们在我们的测试集的 BSDS 数据集进行验证的方法介绍了参数的影响。我们有学习两个功能的重要参数: 形状类 k 的数量和我们的损失功能的 控制参数λ。

图 5.六个选定示例图像在 BSDS500 数据集轮廓检测结果的插图。前两行展示出了原始 图像和地面实况。接下来的五行描绘 GPB-OWT-UCM[2],素描令牌[30],SCG[39],SE-瓦 尔[12]和深切的轮廓结果。请注意,我们的方法触发地面上的真相轮廓强反应(如鲸在第五 列中的轮廓),并同时抑制了假阳性(如小鱼在第五列中的边缘)。这是更好地使用浏览器缩 放功能去看细节。

图 6. 在 NYUD 数据集提供了轮廓的检测结果的说明[43]为五个选定的示例图像(深度图像 不使用)。在各实施例中,我们看到分别为原始图像和地面实况和我们的结果。我们从 BSD 系统数据了解到深度的轮廓特征,他们可以代表 NYUD 数据集中的物体轮廓。

在图 7 我们探讨的这两个参数的选择 的影响。标准度量 OSD 被用于测量的 精确度。为了节省时间,我们不再适 用于结构化林[11]多尺度的战略,这将 导致 OSD 减少(约 0.006)。需要注意 的是,设置 K=1 表示不进行形状类分 区,则我们的模型等效于学习的二进 制轮廓,而使用 SOFTMAX 损失非轮 廓分类器,从而显着降低了性能。这 证据表明形状类划分是必要的。最佳

结果是另K = 50。如果 $\lambda = 0$,那么, 我们的损失函数减小到 SOFTMAX 损 失,这也降低了性能。设置一个相当 大的 λ ,我们的损失函数趋于只着眼 于损失轮廓和非轮廓的类,这也导致 性能降低。

图 7.有参数扫描得精度。K 是分区形状类的 数量,λ 是在我们的损失函数引入的控制参数。

6. 总结与展望

在这项工作中,我们成功地展示 了如何借鉴在自然图像轮廓检测深卷 积神经网络的判别特征。我们强调两 点:一个是分区的轮廓(正)数据的 子类对培训有效的 CNN 模型是必要 的,另一个是建议积极分享损失函数 它强调了轮廓和非轮廓而不是针对每 个损失的损失子类有利于探索比 SOFTMAX 损失函数更多判别功能。 在 BSDS500 数据集[2]的实验表明该 算法跑赢文献其他竞争方法。通过参 数扫描我们验证了积极的数据分区的 必要性和拟议损失函数的有效性。我 们也验证了对 NYUD 数据集[43]功能 交叉的数据集通用性。

感谢 这项工作是由中国国家自然科学 基金在格兰特 61303095 和 61222308, 中国高等教育博士学科研究基金在格 兰特 20133108120017,创新计划下上 海教委 3989 格兰特 14YZ018,中国中 央电教馆项目-12-0217 的教育部 de 支 持下进行的。同时我们感谢 NVIDIA 公司为我们的学术研究提供了 GPU 设 备。

引用:

[1] P. Agrawal, R. B. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks for object recognition. In Proc. ECCV, pages 329–344, 2014.

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J.
Malik. Contour detection and hierarchical image segmentation. IEEE Trans.Pattern Anal.
Mach. Intell., 33(5):898–916, 2011.

[3] J. T. Barron and J. Malik. Intrinsic scene properties from a single RGB-D image. In Proc. CVPR, pages 17–24, 2013.

[4] J. L. Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214–229, 1980.

[5] A. Berg, J. Deng, and L. Fei-Fei. Imagenet large scale visual recognition challenge 2012. http://www.image-net.org/challenges/LSVRC/ 2012/,2012.

[6] J. Canny. A computational approach to edge detection. IEEETrans. Pattern Anal.

Mach. Intell., 8(6):679-698, 1986.

[7] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603–619, 2002.

[8] T. Cour, F. B én ézit, and J. Shi. Spectral segmentation with multiscale graph decomposition. In Proc. CVPR, pages 1124–1131, 2005.

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. CVPR, pages 886–893, 2005.

[10] P. Dollar, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In Proc. CVPR, volume 2, pages 1964–1971, 2006.

[11] P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In Proc. ICCV, pages 1841–1848, 2013.

[12] P. Doll ár and C. L. Zitnick. Fast edge detection using structured forests. arXiv preprint arXiv:1406.5549, 2014.

[13] J. Donahue, Y. Jia, O. Vinyals, J.
Hoffman, N. Zhang, E. Tzeng, and T. Darrell.
Decaf: A deep convolutional activation feature for generic visual recognition. In Proc.
ICML, pages 647–655, 2014.

[14] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In Proc.ECCV, pages 184–199. Springer, 2014.

[15] C. Farabet, C. Couprie, L. Najman, and Y.LeCun. Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal.

Mach. Intell., 35(8):1915–1929, 2013.

[16] P. F. Felzenszwalb and D. P. Huttenlocher.Efficient graphbased image segmentation.International Journal of Computer Vision, 59(2):167–181, 2004.

[17] V. Ferrari, L. Fevrier, F. Jurie, and C.
Schmid. Groups of adjacent contour segments for object detection. IEEE Trans. Pattern Anal.
Mach. Intell., 30(1):36–51, 2008.

[18] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffect-

ed by shift in position. Biological cybernetics, 36(4):193–202, 1980.

[19] Y. Ganin and V. S. Lempitsky. N 4 -fields: Neural network nearest neighbor fields for image transforms. In Proc. ACCV, 2014.

[20] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate eobject detection and semantic segmentation. In Proc. CVPR, pages 580–587, 2014.

[21] P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson. Crisp boundary detection using pointwise mutual information. In Proc. ECCV, pages 799–814, 2014.

[22] Y.Jia. E.Shelhamer, J.Donahue, S.Karayev, J.Long, R.Gir-shick, S. Guadarrama. T. and Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arX-iv:1408.5093, 2014.

[23] J. J. Kivinen, C. K. I. Williams, and N.Heess. Visual boundary prediction: A deep

neural prediction network and quality dissection. In Proc. AISTATS, pages 512–521, 2014.

[24] S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu. S-tatistical edge detection: Learning and evaluating edge cues.IEEE Trans. Pattern Anal. Mach. Intell., 25(1):57–74, 2003.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Proc. NIPS, pages 1106–1114, 2012.

[26] Y. LeCun, B. Boser, J. Denker, D.Henderson, R. Howard, W. Hubbard, and L. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4),1989.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient based learning applied to document recognition. Proceed-ings of the IEEE, 86(11):2278–2324, 1998.

[28] C.-Y. Lee, S. Xie, P. Gallagher, Z.Zhang, , and Z. Tu.Deeply-supervised nets. InProc. AISTATS, 2015.

[29] M. Leordeanu, R. Sukthankar, and C.
Sminchisescu. Generalized boundaries from multiple image interpretations. IEEETrans.
Pattern Anal. Mach. Intell., 36(7):1312–1324, 2014.

[30] J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-level representation for contour and object detection. In Proc. CVPR, pages 3158–3165, 2013.

[31] D. G. Lowe. Distinctive image features

from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004. [32] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using contours to detect and localize junctions in natural images. In Proc. CVPR, 2008. [33] M. Maire, S. X. Yu, and P. Perona. Reconstructive sparse code transfer for contour detection and semantic labeling. In Proc. ACCV, 2014. [34] D. R. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell., 26(5):530-549, 2004. [35] D. R. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proc. ICCV, pages 416-425, 2001. [36] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proc. ICML, pages 807-814,2010