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Abstract

Recent advances in convolutional neural networks

(CNN) have achieved remarkable results in locating objects

in images. In these networks, the training procedure usually

requires providing bounding boxes or the maximum number

of expected objects. In this paper, we address the task of es-

timating object locations without annotated bounding boxes

which are typically hand-drawn and time consuming to la-

bel. We propose a loss function that can be used in any fully

convolutional network (FCN) to estimate object locations.

This loss function is a modification of the average Haus-

dorff distance between two unordered sets of points. The

proposed method has no notion of bounding boxes, region

proposals, or sliding windows. We evaluate our method

with three datasets designed to locate people’s heads, pupil

centers and plant centers. We outperform state-of-the-art

generic object detectors and methods fine-tuned for pupil

tracking.

1. Introduction

Locating objects in images is an important task in com-

puter vision. A common approach in object detection is to

obtain bounding boxes around the objects of interest. In this

paper, we are not interested in obtaining bounding boxes.

Instead, we define the object localization task as obtaining

a single 2D coordinate corresponding to the location of each

object. The location of an object can be any key point we are

interested in, such as its center. Figure 1 shows an example

of localized objects in images. Differently from other key-

point detection problems, we do not know in advance the

number of keypoints in the image. To also make the method

as generic as possible we do not assume any physical con-

straint between the points, unlike in cases such as pose esti-

mation. This definition of object localization is more appro-

priate for applications where objects are very small, or sub-

stantially overlap (see the overlapping plants in Figure 1).

In these cases, bounding boxes may not be provided by the

dataset or they may be infeasible to groundtruth.

Bounding-box annotation is tedious, time-consuming

and expensive [37]. For example, annotating ImageNet [43]

Figure 1. Object localization with human heads, eye pupils and

plant centers. (Bottom) Heat map and estimations as crosses.

required 42 seconds per bounding box when crowdsourcing

on Amazon’s Mechanical Turk using a technique specifi-

cally developed for efficient bounding box annotation [50].

In [6], Bell et al. introduce a new dataset for material recog-

nition and segmentation. By collecting click location labels

in this dataset instead of a full per-pixel segmentation, they

reduce the annotation costs an order of magnitude.

In this paper, we propose a modification of the average

Hausdorff distance as a loss function of a CNN to estimate

the location of objects. Our method does not require the use

of bounding boxes in the training stage, and does not require

to know the maximum number of objects when designing

the network architecture. For simplicity, we describe our

method only for a single class of objects, although it can

trivially be extended to multiple object classes. Our method

is object-agnostic, thus the discussion in this paper does

not include any information about the object characteristics.

Our approach maps input images to a set of coordinates, and

we validate it with diverse types of objects. We evaluate our

method with three datasets. One dataset contains images ac-

quired from a surveillance camera in a shopping mall, and

we locate the heads of people. The second dataset contains

images of human eyes, and we locate the center of the pupil.

The third dataset contains aerial images of a crop field taken
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from an Unmanned Aerial Vehicle (UAV), and we locate the

centers of highly occluded plants.

Our approach to object localization via keypoint detec-

tion is not a universal drop-in replacement for bounding box

detection, specially for those tasks that inherently require

bounding boxes, such as automated cropping. Also, a limi-

tation of this approach is that bounding box labeling incor-

porates some sense of scale, while keypoints do not.

The contributions of our work are:

• We propose a loss function for object localization,

which we name weighted Hausdorff distance (WHD),

that overcomes the limitations of pixelwise losses such

as L2 and the Hausdorff distances.

• We develop a method to estimate the location and

number of objects in an image, without any notion of

bounding boxes or region proposals.

• We formulate the object localization problem as the

minimization of distances between points, indepen-

dently of the model used in the estimation. This al-

lows to use any fully convolutional network architec-

tural design.

• We outperform state-of-the-art generic object detectors

and achieve comparable results with crowd counting

methods without any domain-specific knowledge, data

augmentation, or transfer learning.

2. Related Work

Generic object detectors. Recent advances in deep

learning [16, 27] have increased the accuracy of localiza-

tion tasks such as object or keypoint detection. By generic

object detectors, we mean methods that can be trained to

detect any object type or types, such as Faster-RCNN [15],

Single Shot MultiBox Detector (SSD) [31], or YOLO [40].

In Fast R-CNN, candidate regions or proposals are gener-

ated by classical methods such as selective search [59]. Al-

though activations of the network are shared between region

proposals, the system cannot be trained end-to-end. Re-

gion Proposal Networks (RPNs) in object detectors such

as Faster R-CNN [15, 41] allow for end-to-end training

of models. Mask R-CNN [18] extends Faster R-CNN by

adding a branch for predicting an object mask but it runs in

parallel with the existing branch for bounding box recog-

nition. Mask R-CNN can estimate human pose keypoints

by generating a segmentation mask with a single class in-

dicating the presence of the keypoint. The loss function

in Mask R-CNN is used location by location, making the

keypoint detection highly sensitive to alignment of the seg-

mentation mask. SDD provides fixed-sized bounding boxes

and scores indicating the presence of an object in the boxes.

The described methods either require groundtruthed bound-

ing boxes to train the CNNs or require to set the maximum

number of objects in the image being analyzed. In [19], it

is observed that generic object detectors such as Faster R-

CNN and SSD perform very poorly for small objects.

Counting and locating objects. Counting the number

of objects in an image is not a trivial task. In [28], Lem-

pitsky et al. estimate a density function whose integral cor-

responds to the object count. In [47], Shao et al. proposed

two methods for locating objects. One method first counts

and then locates, and the other first locates and then counts.

Locating and counting people is necessary for many ap-

plications such as crowd monitoring in surveillance sys-

tems, surveys for new businesses, and emergency manage-

ment [28, 60]. There are multiple studies in the litera-

ture, where people in videos of crowds are detected and

tracked [2, 7]. These detection methods often use bound-

ing boxes around each human as ground truth. Acquiring

bounding boxes for each person in a crowd can be labor in-

tensive and imprecise under conditions where lots of people

overlap, such as sports events or rush-hour agglomerations

in public transport stations. More modern approaches avoid

the need of bounding boxes by estimating a density map

whose integral yields the total crowd count. In approaches

that involve a density map, the label of the density map is

constructed from the labels of the people’s heads. This is

typically done by centering Gaussian kernels at the location

of each head. Zhang et al. [62] estimate the density im-

age using a multi-column CNN that learns features at dif-

ferent scales. In [44], Sam et al. use multiple independent

CNNs to predict the density map at different crowd densi-

ties. An additional CNN classifies the density of the crowd

scene and relays the input image to the appropriate CNN.

Huang et al. [20] propose to incorporate information about

the body part structure to the conventional density map to

reformulate the crowd counting as a multi-task problem.

Other works such as Zhang et al. [61] use additional in-

formation such as the groundtruthed perspective map.

Methods for pupil tracking and precision agriculture are

usually domain-specific. In pupil tracking, the center of the

pupil must be resolved in images obtained in real-world il-

lumination conditions [13]. A wide range of applications,

from commercial applications such as video games [52],

driving [48, 17] or microsurgery [14] rely on accurate pupil

tracking. In remote precision agriculture, it is critical to

locate the center of plants in a crop field. Agronomists

use plant traits such as plant spacing to predict future crop

yield [56, 51, 57, 12, 8], and plant scientists to breed new

plant varieties [3, 35]. In [1], Aich et al. count wheat

plants by first segmenting plant regions and then counting

the number of plants in each segmented patch.

Hausdorff distance. The Hausdorff distance can be

used to measure the distance between two sets of points [5].

Modifications of the Hausdorff distance [10] have been

used for various multiple tasks, including character recog-
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nition [33], face recognition [23] and scene matching [23].

Schutze et al. [46] use the average Hausdorff distance

to evaluate solutions in multi-objective optimization prob-

lems. In [24], Elkhiyari et al. compare features extracted by

a CNN according to multiple variants of the Hausdorff dis-

tance for the task of face recognition. In [11], Fan et al. use

the Chamfer and Earth Mover’s distance, along with a new

neural network architecture, for 3D object reconstruction

by estimating the location of a fixed number of points. The

Hausdorff distance is also a common metric to evaluate the

quality of segmentation boundaries in the medical imaging

community [54, 63, 30, 55].

3. The Average Hausdorff Distance

Our work is based on the Hausdorff distance which we

briefly review in this section. Consider two unordered non-

empty sets of points X and Y and a distance metric d(x, y)
between two points x ∈ X and y ∈ Y . The function d(·, ·)
could be any metric. In our case we use the Euclidean dis-

tance. The sets X and Y may have different number of

points. Let Ω ⊂ R
2 be the space of all possible points. In

its general form, the Hausdorff distance between X ⊂ Ω
and Y ⊂ Ω is defined as

dH(X,Y ) = max

{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

.

(1)

When considering a discretized and bounded Ω, such as

all the possible pixel coordinates in an image, the suprema

and infima are achievable and become maxima and minima,

respectively. This bounds the Hausdorff distance as

d(X,Y ) ≤ dmax = max
x∈Ω,y∈Ω

d(x, y), (2)

which corresponds to the diagonal of the image when using

the Euclidean distance. As shown in [5], the Hausdorff dis-

tance is a metric. Thus ∀X,Y, Z ⊂ Ω we have the following

properties:

dH(X,Y ) ≥ 0 (3a)

dH(X,Y ) = 0 ⇐⇒ X = Y (3b)

dH(X,Y ) = dH(Y,X) (3c)

dH(X,Y ) ≤ dH(X,Z) + dH(Z, Y ) (3d)

Equation (3b) follows from X and Y being closed, be-

cause in our task the pixel coordinate space Ω is discretized.

These properties are very desirable when designing a func-

tion to measure how similar X and Y are [4].

A shortcoming of the Hausdorff function is its high sen-

sitivity to outliers [46, 54]. Figure 2 shows an example for

two finite sets of points with one outlier. To avoid this, the

Figure 2. Illustration of two different configurations of point sets

X = {x1, ..., x5} (solid dots) and Y = {y1, ..., y4} (dashed dots).

Despite the clear difference in the distances between points, their

Hausdorff distance are equal because the worst outlier is the same.

average Hausdorff distance is more commonly used:

dAH(X,Y ) =
1

|X|

∑

x∈X

min
y∈Y

d(x, y)+
1

|Y |

∑

y∈Y

min
x∈X

d(x, y),

(4)

where |X| and |Y | are the number of points in X and Y , re-

spectively. Note that properties (3a), (3b) and (3c) are still

true, but (3d) is not. Also, the average Hausdorff distance is

differentiable with respect to any point in X or Y .

Let Y contain the ground truth pixel coordinates, and X
be our estimation. Ideally, we would like to use dAH(X,Y )
as the loss function during the training of our convolutional

neural network (CNN). We find two limitations when incor-

porating the average Hausdorff distance as a loss function.

First, CNNs with linear layers implicitly determine the esti-

mated number of points |X| as the size of the last layer. This

is a drawback because the actual number of points depends

on the content of the image itself. Second, FCNs such as U-

Net [42] can indicate the presence of an object center with a

higher activation in the output layer, but they do not return

the pixel coordinates. In order to learn with backpropaga-

tion, the loss function must be differentiable with respect to

the network output.

4. The Weighted Hausdorff Distance

To overcome these two limitations, we modify the aver-

age Hausdorff distance as follows:

dWH(p, Y ) =
1

S + ǫ

∑

x∈Ω

px min
y∈Y

d(x, y)+

1

|Y |

∑

y∈Y

Mα
x∈Ω

[ pxd(x, y) + (1− px)dmax ] ,

(5)

where

S =
∑

x∈Ω

px, (6)
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Mα
a∈A

[f(a)] =

(

1

|A|

∑

a∈A

fα(a)

)
1

α

, (7)

is the generalized mean, and ǫ is set to 10−6. We

call dWH(p, Y ) the weighted Hausdorff distance (WHD).

px ∈ [0, 1] is the single-valued output of the network at

pixel coordinate x. The last activation of the network can

be bounded between zero and one by using a sigmoid non-

linearity. Note that p does not need to be normalized, i.e.,
∑

x∈Ω px = 1 is not necessary. Note that the generalized

mean Mα [·] corresponds to the minimum function when

α = −∞. We justify the modifications applied to Equa-

tion (4) to obtain Equation (5) as follows:

1. The ǫ in the denominator of the first term provides nu-

merical stability when px ≈ 0 ∀x ∈ Ω.

2. When px = {0, 1}, α = −∞, and ǫ = 0, the weighted

Hausdorff distance becomes the average Hausdorff

distance. We can interpret this as the network indi-

cating with complete certainty where the object cen-

ters are. As dWH(p, Y ) ≥ 0, the global minimum

(dWH(p, Y ) = 0) corresponds to px = 1 if x ∈ Y
and 0 otherwise.

3. In the first term, we multiply by px to penalize high ac-

tivations in areas of the image where there is no ground

truth point y nearby. In other words, the loss function

penalizes estimated points that should not be there.

4. In the second term, by using the expression

f(·) := pxd(x, y) + (1− px)dmax we enforce that

(a) If px0
≈ 1, then f(·) ≈ d(x0, y). This means the

point x0 will contribute to the loss as in the AHD

(Equation (4)).

(b) If px0
≈ 0, x0 6= y, then f(·) ≈ dmax. Then,

if α = −∞, the point x0 will not contribute to

the loss because the “minimum” Mx∈Ω[ · ] will

ignore x0. If another point x1 closer to y with

px1
> 0 exists, x1 will be “selected” instead by

M [ · ]. Otherwise Mx∈Ω[ · ] will be high. This

means that low activations around ground truth

points will be penalized.

Note that f(·) is not the only expression that would

enforce these two constraints (f |px=1 = d(x, y) and

f |px=0 = dmax). We chose a linear function because

of its simplicity and numerical stability.

Both terms in the WHD are necessary. If the first term

is removed, then the trivial solution is px = 1 ∀x ∈ Ω.

If the second term is removed, then the trivial solution is

px = 0 ∀x ∈ Ω. These two cases hold for any value of

α and the proof can be found in the suplemental material.

Ideally, the parameter α → −∞ so that Mα(·) = || · ||−∞

becomes the minimum operator [26]. However, this would

make the second term flat with respect to the output of the

network. For a given y, changes in px0
in a point x0 that is

far from y would be ignored by M−∞(·), if there is another

point x1 with high activation and closer to y. In practice,

this makes training difficult because the minimum is not a

smooth function with respect to its inputs. Thus, we ap-

proximate the minimum with the generalized mean Mα(·),
with α < 0. The more negative α is, the more similar to the

AHD the WHD becomes, at the expense of becoming less

smooth. In our experiments, α = −1. There is no need to

use Mα(·) in the first term because px is not inside the min-

imum, thus the term is already differentiable with respect to

p.

If the input image needs to be resized to be fed into the

network, we can normalize the WHD to account for this dis-

tortion. Denote the original image size as (S
(1)
o , S

(2)
o ) and

the resized image size as (S
(1)
r , S

(2)
r ). In Equation (5), we

compute distances in the original pixel space by replacing

d(x, y) with d(Sx, Sy), where x, y ∈ Ω and

S =

(

S
(1)
o /S

(1)
r 0

0 S
(2)
o /S

(2)
r

)

. (8)

4.1. Advantage Over Pixelwise Losses

A naive alternative is to use a one-hot map as label, de-

fined as lx = 1 for x ∈ Y and lx = 0 otherwise, and then

use a pixelwise loss such as the Mean Squared Error (MSE)

or the L2 norm, where L2(l, p) =
∑

∀x∈Ω |px − lx|
2 ∝

MSE(l, x). The issue with pixelwise losses is that they are

not informative of how close two points x ∈ Ω and y ∈ Y
are unless x = y. In other words, it is flat for the vast major-

ity of the pixels, making training unfeasible. This issue is

locally mitigated in [58] by using the MSE loss with Gaus-

sians centered at each x ∈ Y . By contrast, the WHD in

Equation (5) will decrease the closer x is to y, making the

loss function informative outside of the global minimum.

5. CNN Architecture And Location Estimation

In this section, we describe the architecture of the fully

convolutional network (FCN) we use, and how we esti-

mate the final object locations. We want to emphasize that

the network design is not a meaningful contribution of this

work, thus we have not made any attempt to optimize it. Our

main contribution is the use of the weighted Hausdorff dis-

tance as the loss function. We adopt the U-Net architecture

[42] and modify it minimally for this task. Networks similar

to U-Net have been proven to be capable of accurately map-

ping the input image into an output image, when trained in

a conditional adversarial network setting [22] or when us-

ing a carefully tuned loss function [42]. Figure 3 shows the
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Figure 3. The FCN architecture used for object localization, min-

imally adapted from the U-Net [42] architecture. We add a small

fully-connected layer that combines the deepest features and the

estimated probability map to regress the number of points.

hourglass design of U-Net. The residuals connections be-

tween each layer in the encoder and its symmetric layer in

the decoder are not shown for simplicity.

This FCN has two well differentiated blocks. The first

block follows the typical architecture of a CNN. It consists

of the repeated application of two 3× 3 convolutions (with

padding 1), each followed by a batch normalization opera-

tion and a Rectified Linear Unit (ReLU). After the ReLU,

we apply a 2 × 2 max pooling operation with stride 2 for

downsampling. At each downsampling step we double the

number of feature channels, starting with 64 channels and

using 512 channels for the last 5 layers.

The second block consists of repeated applications of the

following elements: a bilinear upsampling, a concatenation

with the feature map from the downsampling block, and two

3× 3 convolutions, each followed by a batch normalization

and a ReLU. The final layer is a convolution layer that maps

to the single-channel output of the network, p.

To estimate the number of objects in the image, we add

a branch that combines the information from the deepest

level features and also from the estimated probability map.

This branch combines both features (the 1×1×512 feature

vector and the 256 × 256 probability map) into a hidden

layer, and uses the 128-dimensional feature vector to output

a single number. We then apply a ReLU to ensure the output

is positive, and round it to the closest integer to obtain our

final estimate of the number of objects, Ĉ.

Although we use this particular network architecture,

any other architecture could be used. The only requirement

is that the output images of the network must be of the same

size as the input image. The choice of a FCN arises from the

natural interpretation of its output as the weights (px) in the

WHD (Equation (5)). In previous works [24, 11], variants

of the average Haussdorf distance were successfully used

with non-FCN networks that estimate the point set directly.

However, in those cases the size of the estimated set is fixed

by the size of the last layer. To locate an unknown number

Figure 4. First row: Input image. Second row: Output of the net-

work (p in the text) overlaid onto the input image. This can be

considered a saliency map of object locations. Third row: The

estimated object locations are marked with a red cross.

of objects, the network must be able to estimate a variable

number of object locations. Thus, we could envision the

WHD also being used in non-FCN networks as long as the

output of the network is used as p in Equation (5).

The training loss we use to train the network is a combi-

nation of Equation (5) and a smooth L1 loss for the regres-

sion of the object count. The final training loss is

L(p, Y ) = dWH(p, Y ) + Lreg(C − Ĉ(p)), (9)

where Y is the set containing the ground truth coordi-

nates of the objects in the image, p is the output of the

network, C = |Y |, and Ĉ(p) is the estimated number of

objects. Lreg(·) is the regression term, for which we use the

smooth L1 or Huber loss [21], defined as

Lreg(x) =

{

0.5x2, for|x| < 1

|x| − 0.5, for|x| ≥ 1
(10)

This loss is robust to outliers when the regression error is

high, and at the same time is differentiable at the origin.

The network outputs a saliency map p indicating with

px ∈ [0, 1] the confidence that there is an object at pixel

x. Figure 4 shows p in the second row. During evaluation,

our ultimate goal is to obtain Ŷ , i. e., the estimate of all

object locations. In order to convert p to Ŷ , we threshold

p to obtain the pixels T = {x ∈ Ω | px > τ}. We can use

three different methods to decide which τ to use:
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1. Use a constant τ for all images.

2. Use Otsu thresholding [36] to find an adaptive τ dif-

ferent for every image.

3. Use a Beta mixture model-based thresholding (BMM).

This method fits a mixture of two Beta distributions to

the values of p using the algorithm described in [45],

and then takes the mean value of the distribution with

highest mean as τ .

Figure 4 shows in the third row an example of the result

of thresholding the saliency map p. Then, we fit a Gaussian

mixture model to the points T . This is done using the expec-

tation maximization (EM) [34] algorithm and the estimated

number of plants Ĉ.

The means of the fitted Gaussians are considered the fi-

nal estimate Ŷ . The third row of Figure 4 shows the esti-

mated object locations with red crosses. Note that even if

the map produced by the FCN is of good quality, i.e., there

is a cluster on each object location, EM may not yield the

correct object locations if |Ĉ − C| > 0.5. An example can

be observed in the first column of Figure 4, where a single

head is erroneously estimated as two heads.

6. Experimental Results

We evaluate our method with three datasets.

The first dataset consists of 2,000 images ac-

quired from a surveillance camera in a shopping

mall. It contains annotated locations of the heads

of the crowd. This dataset is publicly available at

http://personal.ie.cuhk.edu.hk/˜ccloy/

downloads_mall_dataset.html [32]. 80%, 10%

and 10% of the images were randomly assinged to the

training, validation, and testing datasets, respectively.

The second dataset is presented in [13] with

the roman letter V and publicly available at

http://www.ti.uni-tuebingen.de/

Pupil-detection.1827.0.html. It contains

2,135 images with a single eye, and the goal is to detect the

center of the pupil. It was also randomly split into training,

validation and testing datasets as 80/10/10 %, respectively.

The third dataset consists of aerial images of a crop field

taken from a UAV flying at an altitude of 40 m. The im-

ages were stitched together to generate a 6, 000 × 12, 000
orthoimage of 0.75 cm/pixel resolution shown in Figure 5.

The location of the center of all plants in this image was

groundtruthed, resulting in a total of 15,208 unique plant

centers. This mosaic image was split, and the left 80% area

was used for training, the middle 10% for validation, and

the right 10% for testing. Within each region, random im-

age crops were generated. These random crops have a uni-

formly distributed height and width between 100 and 600

pixels. We extracted 50,000 random image crops in the

Figure 5. An orthorectified image of a crop field with 15,208

plants. The red region was used for training, the region in green

for validation, and the region in blue for testing.

training region, 5, 000 in the validation region, and 5, 000
in the testing region. Note that some of these crops may

highly overlap. We are making the third dataset publicly

available at https://engineering.purdue.edu/

˜sorghum/dataset-plant-centers-2016. We

believe this dataset will be valuable for the community, as it

poses a challenge due to the high occlusion between plants.

All the images were resized to 256 × 256 because

that is the minimum size our architecture allows. The

groundtruthed object locations were also scaled accord-

ingly. As for data augmentation, we only use random hori-

zontal flip. For the plant dataset, we also flipped the images

vertically. We set α = −1 in Equation (7). We have also

experimented with α = −2 with no apparent improvement,

but we did not attempt to find an optimal value. We retrain

the network for every dataset, i.e., we do not use pretrained

weights. For the mall and plant dataset, we used a batch

size of 32 and Adam optimizer [25, 39] with a learning rate

of 10−4 and momentum of 0.9. For the pupil dataset, we

reduced the size of the network by removing the five central

layers, we used a batch size of 64, and stochastic gradient

descent with a learning rate of 10−3 and momentum of 0.9.

At the end of each epoch, we evaluate the average Hauss-

dorf distance (AHD) in Equation (4) over the validation set,

and select the epoch with lowest AHD on validation.

As metrics, we report Precision, Recall, F-score, AHD,

Mean Absolute Error (MAE), Root Mean Squared Error

(RMSE), and Mean Absolute Percent Error (MAPE):

MAE =
1

N

N
∑

i=1

|ei|, RMSE =

√

√

√

√

1

N

N
∑

i=1

∣

∣ei
∣

∣

2
(11)

MAPE = 100
1

N

N
∑

i=1
Ci�=0

∣

∣ei
∣

∣

Ci

(12)

where ei = Ĉi−Ci, N is the number of images, Ci is the

true object count in the i-th image, and Ĉi is our estimate.

A true positive is counted if an estimated location is at

most at distance r from a ground truth point. A false pos-

itive is counted if an estimated location does not have any

6484



ground truth point at a distance at most r. A false negative

is counted if a true location does have any estimated loca-

tion at a distance at most r. Precision is the proportion of

our estimated points that are close enough to a true point.

Recall is the proportion of the true points that we are able

to detect. The F-score is the harmonic mean of precision

and recall. Note that one can achieve a precision and recall

of 100% even if we estimate more than one object location

per ground truth point. This would not be an ideal local-

ization. To take this into account, we also report metrics

(MAE, RMSE and MAPE) that indicate if the number of

objects is incorrect. The AHD can be interpreted as the av-

erage location error in pixels.

Figure 8 shows the F-score as a function of r. Note that

r is only an evaluation parameter. It is not needed during

training or testing. MAE, RMSE, and MAPE are shown in

Table 1. Note that we are using the same architecture for all

tasks, except for the pupil dataset, where we removed inter-

mediate layers. Also, in the case of the pupil detection, we

know that there is always one object in the image. Thus, re-

gression is not necessary and we can remove the regression

term in Equation (9) and fix Ĉi = Ci = 1 ∀i.

A naive alternative approach to object localization would

be to use generic object detectors such as Faster R-CNN

[41]. One can train these detectors by constructing bound-

ing boxes with fixed size centered at each labeled point.

Then the center of each bounding box can be taken as the es-

timated location. We used bounding boxes of size 20 × 20
(the approximate average head and pupil size) and anchor

sizes of 16 × 16 and 32 × 32. Note that these parameters

may be suboptimal even though they were selected to match

the type of object. The threshold we used for the softmax

scores was 0.5 and for the intersection over union it was

0.4, because they minimize the AHD over the validation set.

We used the VGG-16 architecture [49] and trained it using

stochastic gradient descent with learning rate of 10−3 and

momentum of 0.9. For the pupil dataset, we always selected

the bounding box with the highest score. We experimentally

observed that Faster R-CNN struggles with detecting very

small objects that are very close to each other. Tables 2-4

show the results of Faster R-CNN results on the mall, pupil,

and plant datasets. Note that the mall and plant datasets,

with many small and highly overlapping objects, are the

most challenging for Faster R-CNN. This behaviour is con-

sistent with the observations in [19], where, all generic ob-

ject detectors perform very poorly and Faster R-CNN yields

a mean Average Precision (mAP) of 5% in the best case.

We also experimented using mean shift [9] instead of

Gaussian mixtures (GM) to detect the local maxima. How-

ever, mean shift is prone to detect multiple local maxima,

and GMs are more robust against outliers. In our experi-

ments, we observed that precision and recall were substan-

tially worse than using GM. More importantly, using Mean

Figure 6. Effect on the F-score of the threshold τ .

Figure 7. Beta mixture model fitted on the values of px, and the

thresholds τ used by the BMM method.

Shift slowed down validation an order of magnitude. The

average time for the Mean Shift algorithm to run on one of

our images was 12 seconds, while fitting GM using expec-

tation maximization took around 0.5 seconds, when using

the scikit-learn implementations [38].

We also investigated the effect of the parameter τ , and

the three methods to select it presented in Section 5. One

may think that this parameter could be a trade-off between

some metrics, and that it should be cross-validated. In prac-

tice, we observed that τ does not balance precision and re-

call, thus a precision-recall curve is not meaningful. In-

stead, we plot the F-score as a function of r in Figure 8.

Also, cross-validating τ would imply fixing an “optimal”

value for all images. Figure 6 shows that we can do better

with adaptive thresholding methods (Otsu or BMM). Note

that BMM thresholding (dashed lines) always outperforms

Otsu (solid lines), and most of fixed τ . To justify the appro-

priateness of the BMM method, note that in Figure 4 most

of the values in the estimated map are very high or very low.

This makes a Beta distribution a better fit than a Normal dis-

tribution (as used in Otsu’s method) to model px. Figure 7

shows the fitted BMM and a kernel density estimation of

the values of τ adaptively selected by the BMM method.
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Figure 8. F-score as a function of r, the maximum distance be-

tween a true and an estimated object location to consider it correct

or incorrect. A higher r makes correctly locating an object easier.

Table 1. Results of our method for object localization, using r = 5.

Metrics are defined in Equations (4), (11)-(12). Regression metrics

for the pupil dataset are not shown because there is always a single

pupil (Ĉ = C = 1). Figure 8 shows the F-score for other r values.

Metric
Mall

dataset

Pupil

dataset

Plant

dataset
Average

Precision 95.2% 99.5% 88.1% 94.4%

Recall 96.2% 99.5% 89.2% 95.0%

F-score 95.7% 99.5% 88.6% 94.6%

AHD 4.5 px 2.5 px 7.1 px 4.7 px

MAE 1.4 - 1.9 1.7

RMSE 1.8 - 2.7 2.3

MAPE 4.4% - 4.2% 4.3 %

Lastly, as our method locates and counts objects simul-

taneously, it could be used as a counting technique. We also

evaluated our technique in the task of crowd counting us-

ing the ShanghaiTech Part B dataset presented in [62], and

achieve a MAE of 19.9. Even though we do not outper-

form state of the art methods that are specifically fine-tuned

for crowd counting [29], we can achieve comparable results

with our generic method. We expect future improvements

such as architectural changes or using transfer learning to

further increase the performance.

A PyTorch implementation of the weighted Haus-

dorff distance loss and trained models are avail-

able at https://github.com/javiribera/

locating-objects-without-bboxes.

7. Conclusion

We have presented a loss function for the task of locating

objects in images that does not need bounding boxes. This

loss function is a modification of the average Hausdorff dis-

tance (AHD), which measures the similarity between two

Table 2. Head location results using the mall dataset, using r = 5.

Metric Faster-RCNN Ours

Precision 81.1% 95.2 %

Recall 76.7% 96.2 %

F-score 78.8 % 95.7 %

AHD 7.6 px 4.5 px

MAE 4.7 1.4

RMSE 5.6 1.8

MAPE 14.8% 4.4 %

Table 3. Pupil detection results, using r = 5. Precision and recall

are equal because there is only one estimated and one true object.

Method Precision Recall AHD

Swirski [53] 77 % 77 % -

ExCuSe [13] 77 % 77 % -

Faster-RCNN 99.5 % 99.5 % 2.7 px

Ours 99.5 % 99.5 % 2.5 px

Table 4. Plant location results using the plant dataset, using r = 5.

Metric Faster-RCNN Ours

Precision 86.6 % 88.1 %

Recall 78.3 % 89.2 %

F-score 82.2 % 88.6 %

AHD 9.0 px 7.1 px

MAE 9.4 1.9

RMSE 13.4 2.7

MAPE 17.7 % 4.2 %

unordered sets of points. To make the AHD differentiable

with respect to the network output, we have considered the

certainty of the network when estimating an object location.

The output of the network is a saliency map of object loca-

tions and the estimated number of objects. Our method is

not restricted to a maximum number of objects in the im-

age, does not require bounding boxes, and does not use re-

gion proposals or sliding windows. This approach can be

used in tasks where bounding boxes are not available, or the

small size of objects makes the labeling of bounding boxes

impractical. We have evaluated our approach with three dif-

ferent datasets, and outperform generic object detectors and

task-specific techniques. Future work will include develop-

ing a multi-class object location estimator in a single net-

work, and evaluating more modern CNN architectures.
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[13] W. Fuhl, T. Kübler, K. Sippel, W. Rosenstiel, and

E. Kasneci. ExCuSe: Robust pupil detection in real-

world scenarios. Proceedings of the International

Conference on Computer Analysis of Images and Pat-

terns, pages 39–51, September 2015. Valletta, Malta.

[14] W. Fuhl, T. Santini, C. Reichert, D. Claus, A. Herkom-

mer, H. Bahmani, K. Rifai, S. Wahl, and E. Kasneci.

Non-intrusive practitioner pupil detection for unmod-

ified microscope oculars. Computers in Biology and

Medicine, 79:36–44, December 2016.

[15] R. Girshick. Fast R-CNN. Proceedings of the IEEE

International Conference on Computer Vision, pages

1440–1448, December 2015.

[16] I. Goodfellow, Y. Bengio, and A. Courville. Deep

Learning. MIT Press, November 2016.

[17] J. Gu, X. Yang, S. De Mello, and J. Kautz. Dynamic

facial analysis: From bayesian filtering to recurrent

neural network. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages

1548–1557, July 2017. Honolulu, HI.

[18] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask

R-CNN. arXiv:1703.06870, April 2017.

[19] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadar-

rama, and K. Murphy. Speed/accuracy trade-offs for

modern convolutional object detectors. Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, July 2017. Honolulu, HI.

[20] S. Huang, X. Li, Z. Zhang, F. Wu, S. Gao, R. Ji, and

J. Han. Body structure aware deep crowd counting.

IEEE Transactions on Image Processing, 27(3):1049–

1059, March 2018.

[21] P. J. Huber. Robust estimation of a location parameter.

The Annals of Mathematical Statistics, pages 73–101,

1964.

[22] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-

to-image translation with conditional adversarial net-

works. Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, July 2017. Hon-

olulu, HI.

[23] K. L. K. Lin and W. Siu. Spatially eigen-weighted

Hausdorff distances for human face recognition. Pat-

tern Recognition, 36(8):1827–1834, August 2003.

[24] H. E. Khiyari and H. Wechsler. Age invariant

face recognition using convolutional neural networks

and set distances. Journal of Information Security,

8(3):174–185, July 2017.

6487



[25] D. P. Kingma and J. Ba. Adam: A method for

stochastic optimization. Proceedings of the Inter-

national Conference for Learning Representations,

abs/1412.6980, April 2015. San Diego, CA.

[26] C. S. Kubrusly. Banach spaces Lp. In Essentials of

Measure Theory, page 83. Springer, Cham, 2005.

[27] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.

Nature, 521:436–444, May 2015.

[28] V. Lempitsky and A. Zisserman. Learning to count

objects in images. Proceedings of the Advances in

Neural Information Processing Systems, pages 1324–

1332, December 2010. Vancouver, Canada.

[29] Y. Li, X. Zhang, and D. Chen. CSRNet: Dilated

convolutional neural networks for understanding the

highly congested scenes. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recog-

nition, pages 1091–1100, June 2018.

[30] S. Liao, Y. Gao, A. Oto, and D. Shen. Representation

learning: A unified deep learning framework for au-

tomatic prostate mr segmentation. Proceedings of the

Medical Image Computing and Computer-Assisted In-

tervention, pages 254–261, September 2013. Nagoya,

Japan.

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,

C. Fu, and A. C. Berg. SSD: Single shot multibox

detector. Proceedings of the European Conference on

Computer Vision, pages 21–37, October 2016. Ams-

terdam, The Netherlands.

[32] C. C. Loy, K. Chen, S. Gong, and T. Xiang. Crowd

counting and profiling: Methodology and evalua-

tion. In Modeling, Simulation and Visual Analysis of

Crowds, pages 347–382. Springer, October 2013.

[33] Y. Lu, C. L. Tan, W. Huang, and L. Fan. An approach

to word image matching based on weighted Hausdorff

distance. Proceedings of International Conference on

Document Analysis and Recognition, pages 921–925,

September 2001.

[34] T. K. Moon. The expectation-maximization algo-

rithm. IEEE Signal Processing Magazine, 13(6):47–

60, November 1996.

[35] E. H. Neilson, A. M. Edwards, C. K. Blomstedt,

B. Berger, B. L. Mller, and R. M. Gleadow. Utilization

of a high-throughput shoot imaging system to examine

the dynamic phenotypic responses of a C4 cereal crop

plant to nitrogen and water deficiency over time. Jour-

nal of Experimental Botany, 66(7):1817–1832, 2015.

[36] N. Otsu. A threshold selection method from gray-level

histograms. IEEE Transactions on Systems, Man, and

Cybernetics, 9(1):62–66, January 1979.

[37] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and

V. Ferrari. We don’t need no bounding-boxes: Train-

ing object class detectors using only human verifica-

tion. Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 854–863,

June 2016. Las Vegas, NV.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay. Scikit-learn: Machine learning in Python. Jour-

nal of Machine Learning Research, 12:2825–2830,

2011.

[39] S. J. Reddi, S. Kale, and S. Kumar. On the conver-

gence of adam and beyond. Proceedings of the In-

ternational Conference on Learning Representations,

April 2018. Vancouver, Canada.

[40] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi.

You only look once: Unified, real-time object detec-

tion. Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages

779–788, June 2016. Las Vegas, NV.

[41] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:

Towards real-time object detection with region pro-

posal networks. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 36(6):1137–1149, June

2017.

[42] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Con-

volutional networks for biomedical image segmenta-

tion. Proceedings of the International Conference on

Medical Image Computing and Computer-Assisted In-

tervention, pages 234–241, October 2015. Munich,

Germany.

[43] O. Russakovsky, J. Deng, H. Su, J. Krause,

S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet

large scale visual recognition challenge. International

Journal of Computer Vision, 11(3):211–252, Decem-

ber 2015.

[44] D. B. Sam, S. Surya, and R. V. Babu. Switching con-

volutional neural network for crowd counting. Pro-

ceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 4031–4039, July

2017.
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定位没有边界框的目标

Javier Ribera, David Güera, Yuhao Chen, Edward J. Delp

视频与图像处理实验室 (VIPER),普渡大学

摘要

最近卷积神经网络研究进展（CNN）在图像

中的目标定位方面取得了显著的效果。在这些网

络中，训练过程通常需要提供边界框或者预期的

目标的最大数量。在这篇论文中，我们解决了预估

目标位置的任务并且没有使用标注的边界框，其

中这些边界框通常需要手工绘制并且消耗时间去

进行标注。我们提出了一个损失函数，可在任何全

卷积网络（FCN）使用来预估对象位置。这个损失

函数是两个无序点集之间的平均Hausdorff距离的

改进。提出的方法没有边界框、候选区域或者滑动

窗口的概念。我们使用三个数据集来评估我们的

方法，这些数据集旨在定位人的头部、瞳孔中心和

植物中心。我们的性能优于最先进的通用物体探

测器和针对瞳孔跟踪进行微调的方法。

1.介绍

定位物体在图像中的位置在计算机视觉中是一件

非常重要的任务。在目标检测中一种普遍的方法是获

取感兴趣对象周围的边界框。在本文中，我们对获取

边界框不敢兴趣。相反，我们将目标检测任务定义为

获取对应于每个对象位置的单个二维坐标。目标的位

置可以是我们感兴趣的任何关键点，比如它的中心。

图片 1 展示了一个在图像中定位目标的例子。与其它

关键点检测问题不同，我们事先不知道在图像中关键

点的数目。为了使这个方法尽可能的通用，我们不假

定点之间存在任何物理约束，这与姿态估计等情况不

同。这种对目标检测的定义更适合于对象非常小或者

基本上重叠的应用（比如图片1中重叠的植物）。在这

些情况下，数据集可能不会提供边界框或者它们不可

能得到真实的边界框（groundtruth）。

边界框的标注冗长、耗时且昂贵 [37]。例如，

在Amazon的Mechanical Turk使用专门为边界框开发的

图 1. 人的头部、瞳孔、植物中心的目标定位。（下面一排）

热度图和交叉估计

高效标注技术进行众包 [50]，标注ImageNet [43]中的每

一个边界框需要42秒。在 [6]中，Bell等人介绍了一个

用于材料分类和分割的数据集。通过在此数据集中收

集单击位置的标签，而不是像素级的分割，将标注成

本降低了一个数量级。

在本文中，我们提出了一种修正的平均hausdorff距

离作为CNN的损失函数来预测目标的位置。我们的方

法不要求在训练阶段使用边界框，并且在设计网络结

构的时候也不需要知道目标的最大数量。简单起见，

我们只用一类目标来描述我们的方法，尽管这方法可

以简单地扩展到多类目标。我们的方法是目标不可知

的，因此本文的讨论不包括任何关于目标特性的信息。

我们的方法将输入图像映射到一组坐标，并用不同的

对象对其进行验证。我们用三个数据集来验证我们的

方法。第一个数据集包含了从购物中心监控摄像头获

取的图像，我们在其中定位了人头。第二个数据集包

含了人眼睛的图片，我们在其中定位了瞳孔的中心。



第三个数据集包含了由无人机航拍得到的谷物地的

图像，我们定位了高度封闭（highly occluded）植物中

心。

我们通过关键点检测实现目标定位的方法并不能

取代边界框检测，尤其是对那些天生需要边界框的任

务，比如自动裁剪。此外，这种方法的一个局限性是，

边界框标签包含了某种意义上的尺度，而关键点没

有。

我们工作的贡献是：

• 我们提出了一个用于目标定位的损失函数，我们
称之为加权hausdoeff距离（WHD），它克服了像

素级的损失函数，如L2和hausdorff距离，的局限

性。。

• 我们发展了一种用于估计图像中物体的位置和数
量的方法，并且这种方法不使用任何边界框或者

候选局域。

• 我们把目标定位问题表述为点之间最小距离的问
题，与预测中使用的模型无关。这允许使用任何

全卷积的网络架构设计。

• 我们的性能优于目前最先进的通用目标检测器，
并且在不需要任何领域特定知识、数据增强或迁

移学习的情况下，在人群计数场景下获得了不错

的结果。

2.相关工作

通用目标检测器。深度学习 [16, 27]的最新进展提

高了定位任务（如目标或关键点检测）的准确性。对于

通用的目标检测器，我们指的的是可以经过训练来检

测任何一种或多种目标类型的方法，例如Faster-RCNN

[15]，SSD [31]或者YOLO [40]。在Fast R-CNN中，候

选区域或者建议区域是通过诸如选择性搜索 [59]之类

的经典方法生成的。虽然网络的激活在不同的候选区

域是共享的，但是系统不能端到端地进行训练。目标

检测器中的区域建议网络（RPNs）例如Faster R-CNN

[15, 41]允许端到端的模型训练。 Mask R-CNN [18]通

过增添一个用于预测物体掩码的分支来扩展Faster R-

CNN，但是它和已经存在的用于边界框识别的分支并

行。 Mask r-cnn可以通过生成一个单独的类来表示关

键点的存在来估计人体姿态关键点。 Mask R-CNN中

使用的损失函数是逐点的，使得关键点检测对分割掩

模的对齐高度敏感。 SDD提供固定大小的边界框和

分数，指示框中是否存在目标。刚刚描述的方法要么

在训练CNN时需要边界框要么要求知道图像中的最大

目标数量。在 [19]中，观察到一些诸如Faster R-CNN或

者SSD的通用目标检测器在检测小物体时表现很差。

计数和定位目标。 计算一个图片中目标的数目

并不是一件简单的任务。在 [28]中，Lempitsky等人估

计一个密度函数，它的积分相当于目标的数量。在

[47],Shao等人提出了两种定位目标物体的方法。一种

方法是首先计数然后定位，另一种方法是首先定位然

后计数。

定位和计数人群的数量在很多应用中都是必要的，

例如监控系统中的人群监控，新业务的调查，以及应

急事件管理 [28, 60]. 文献对此有多种研究，人群在

时评中被检测和跟踪。这些检测方法通常使用包围的

人边界框作为基础。在很多人互相重叠的情况下，获

取一个人群中每一个人边界框是劳动密集且不准确

的工作，比如运动会或者高峰时段的交通车站。很多

现代的方法通过估计一个密度图然后对其进行积分

得到总人数来避免对边界框的需要。在使用密度图的

方法中，密度图的标签由人脑袋的标签构建。这通常

是通过将高斯核集中在每个头部的位置来完成的。张

等人 [62]用多栏CNN估计密度图像，这个CNN可以在

不同的尺度上学习特征。在[44]中，Sam等人使用多个

独立的CNN来预测不同人群密度下的密度图。另外一

个CNN对人群场景的密度进行分类，并将输入图像转

发给相应的CNN。黄等人 [20]建议将有关身体部位结

构的信息合并到传统的密度图中，将人群计数重新定

义为一个多任务问题。其它的工作比如张等人 [61]使

用额外的信息比如被视为基本真理的映射图。

瞳孔跟踪和精确农业的方法通常是特定领域的。

在瞳孔跟踪中，必须在实际光照条件下对瞳孔中心

进行解析。广泛的应用中，从商业应用比如视频游戏

[52],驾驶 [48, 17]或者微手术 [14]都依赖于瞳孔追踪。

在远程精准农业中，定位农田中的植物中心是至关重

要的。农学家用这些植物特性比如植物间距来预测未

来的农田产量 [56, 51, 57, 12, 8]，而植物学家则利用这

些特性来培育新的植物品种 [3, 35]。在 [1]中，Aich等

人通过首先将植物分割成若干区域然后计数每个区域

的植物数量来计算小麦的数量。



豪斯多夫（Hausdorff）距离。豪斯多夫距离可以
用来衡量两个点集之间的距离 [5]。豪斯多夫距离的

改进版 [10]被用到了很多任务之中，包括字符识别，

[33]，人脸识别 [23]以及场景匹配 [23]。 Schutze等人

[46]使用平均的豪斯多夫距离来衡量多目标优化的解

决方案。在 [24]中，Elkhiyari等人比较CNN根据多个豪

斯多夫距离的变体提取的特征，以完成人脸识别任务。

在 [11]中，Fan等人使用Chamfer和Mover’s距离以及一

个新的神经网络结构，通过估计一些固定点的位置来

进行三维重建。豪斯多夫距离也是评价医学影像界分

割边界质量的一个常用指标。

3.平均豪斯多夫（Hausdorff）距离

我们的工作是建立在豪斯多夫距离基础上的，我

们将在本节中简洁地回顾它。考虑两个非空的无序点

集 X 和 Y 以及一个距离度量 d(x, y),其中 x ∈ X 并且
y ∈ Y。函数 d(·, ·)可以是任何度量标准。在我们的例
子中，我们使用欧几里得距离。点集 X 和 Y 可能拥有

不同数量的点。让 Ω ⊂ R2表示这个空间所有的点。一

般来说，X ⊂ Ω和 Y ⊂ Ω之间的距离被定义为

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

(1)

当考虑一个离散的有界的 Ω，比如一张图片中的

所有像素点，最小上界和最大下界都是可实现的，并

且分别成为最大值和最小值。这将豪斯多夫距离限制

为

d(X,Y ) ≤ dmax = max
x∈Ω,y∈Ω

d(x, y), (2)

当使用欧式距离时它相当于一张图像的对角线。如果

[5]所展示的，豪斯多夫距离是一个衡量标准。因此，

对于∀X,Y, Z ⊂ Ω，我们有以下的性质：

dH(X,Y ) ≥ 0 (3a)

dH(X,Y ) = 0 ⇐⇒ X = Y (3b)

dH(X,Y ) = dH(Y,X) (3c)

dH(X,Y ) ≤ dH(X,Z) + dH(Z, Y ) (3d)

方程 (3b)由X和Y是有界的导出，因为在我们的任

务中像素的坐标空间 Ω是离散的。当要设计一个函数

去衡量X和Y是多么相似的时候，这些特性是非常有用

的。

图 2.点集X = {x1, ..., x5}（实心点）和Y = {y1, ..., y4}（虚
线点）两种不同的布局的展示。尽管这两个点集之间有着明

显的区别，但它们之间的豪斯多夫距离却因为最糟糕的离群

点是一样的而相等。

豪斯多夫函数的一个缺点是它对离群点的高度敏

感性 [46, 54]。图 2展示一个关于两个都有一个离群点

的点集的例子。为了避免这种情况，平均豪斯多夫距

离被广泛地使用：

dAH(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

d(x, y)+
1

|Y |
∑
y∈Y

min
x∈X

d(x, y),

(4)

其中|X|和|Y |分别是X和Y中点的数量。

注意性质 (3a)， (3b)和 (3c)仍然是真的，但是

(3d)不再成立。同时，平均豪斯多夫距离关于任何

在X或者Y中的点是可微分的。

让Y包含正确的像素坐标，X是我们的估计。理

想情况下，我们将在训练卷积神经网络（CNN）时使

用dAH(X,Y )作为我们的损失函数。当把平均豪斯多夫

距离作为损失函数时我们发现两个限制。首先，具

有线性层的CNN隐式地决定了要估计|X|中点的数目，
即最后一层的神经元个数。这是一个缺陷，因为真正

点的数目由图像自己的内容决定。第二，全卷积网络

（FCNs）比如U-Net [42]可以指示在输出层中存在具有

更高激活度的对象中心，但它们不返回像素坐标。为

了在学习过程中使用反向传播，损失函数对网络的输

出必须是可微的。

4.带权重的豪斯多夫（Hausdorff）距离

为了克服这两种限制，我们对平均豪斯多夫距离

的改进如下所示：



dWH(p, Y ) =
1

S + ε

∑
x∈Ω

px min
y∈Y

d(x, y)+

1

|Y |
∑
y∈Y

Mα
x∈Ω

[ pxd(x, y) + (1− px)dmax ] ,

(5)

其中

S =
∑
x∈Ω

px, (6)

Mα
a∈A

[f(a)] =

(
1

|A|
∑
a∈A

fα(a)

) 1
α

, (7)

是 由 平 均 值 产 生， ε被 设 定 为10−6。 我 们

称dWH(p, Y )为加权豪斯多夫距离（WHD）。 px ∈
[0, 1]是网络在坐标点x处输出的一个单值。最后一层网

络的激活值可以使用sigmoid非线性激活函数将其限制

在0和1之间。注意p不需要标准化，即
∑
x∈Ω px = 1是

不必要的。注意广义上讲，平均Mα [·]对应于当α =

−∞时的最小函数。我们证明将改进应用于 (4)可以得

到 (5)：

1. 第一个项分母中的ε在px ≈ 0 ∀x ∈ Ω时提供了数值

的稳定性。

2. 当px = {0, 1}, α = −∞，并且ε = 0时，加权的豪

斯多夫距离变成了平均的豪斯多夫距离。我们可

以将其解释为网络可以指示出完全确定的物体坐

标。当dWH(p, Y ) ≥ 0时，如果x ∈ Y，则全局最小
值(dWH(p, Y ) = 0)对应于px = 1，否则对应于0。

3. 在第一项中，我们乘以px 来惩罚在图像中附近没

有真正点y的高激活值。换句话说，这个损失函数

惩罚了不应该出现在这地方的估计点。

4. 在第二项中，通过使用表达式

f(·) := pxd(x, y) + (1− px)dmax，我们迫使

(a) 如果px0
≈ 1，则f(·) ≈ d(x0, y)。这意味

着点x0对损失的贡献和其在AHD（Equation

(4)）中的贡献相同。

(b) 如果px0
≈ 0，x0 6= y，则f(·) ≈ dmax。然

后，如果α = −∞，这个点x0将不会对损失

值产生贡献，因为这个“最小值”Mx∈Ω[ · ]会

忽视x0。如果存在一个其它点x1和y更近且

px1
> 0，x1将被“选择”，而不是M [ · ]。否

则，Mx∈Ω[ · ]的值将会很高。这意味着真实
目标点周围的低激活值将被惩罚。

注意f(·)并不是唯一实施这两个约束(f |px=1 =

d(x, y) and f |px=0 = dmax)的表达式。我们选择

一个线性的函数，原因是它们的简单性和数值稳

定性。

WHD中的两项都是必要的。如果第一项被移除，

则这个平凡解是px = 1 ∀x ∈ Ω。如果第二项被移

除，则这个平凡解是px = 0 ∀x ∈ Ω。这两种情况

对α取任何值都适用，其证明在附录中。理想情况下，

这个参数α → −∞，因此Mα(·) = || · ||−∞变成了取
最小的操作符[26]。然而，这将使第二项与网络的输

出持平。对于一个给定的y，如果有另一个点x1有更高

的激活值且更靠近y，点x0中px0中的变化即远离y的点

将被M−∞(·)忽视。在实践中，这是训练变得困难因为
这个最小值对于输入来说并不是一个平滑的函数。因

此，我们用广义的平均Mα(·)来近似最小值，且α < 0。

α越负，AHD和WHD越相似，以变的不那么光滑为代

价。在我们的实验中，α = −1。在第一项中没必要

使用Mα(·) 因为px并不在最小值中，因此这一项已经
对p可微。

如果在将图像喂给网络之前需要对其进行改变，

我们可以规范化WHD来应对这种失真。将原始图像记

为(S
(1)
o , S

(2)
o )同时将改变过后的图像记为(S

(1)
r , S

(2)
r )。

In Equation (5), we compute distances in the original pixel

space by replacing d(x, y) with d(Sx,Sy), where x, y ∈ Ω

and在方程 (5)，我们用d(Sx,Sy)来替代d(x, y)来在原始

的像素空间中计算距离，其中x, y ∈ Ω，并且

S =

(
S

(1)
o /S

(1)
r 0

0 S
(2)
o /S

(2)
r

)
. (8)

4.1.相对于像素级损失函数的优势

一种幼稚的替代方法是使用单热编码的图作为标

签，定义x ∈ Y时lx = 1，否则lx = 0，然后使用像

素级的损失函数，比如均方误差（MSE）或者L2标准，

其中L2(l, p) =
∑
∀x∈Ω |px − lx|2 ∝ MSE(l, x)。像素级

损失函数的问题是除非x = y，否则它们不能说明两

个点x ∈ Ω和y ∈ Y的距离有多斤。换言之，对于绝大



图 3. 用于目标定位的FCN架构，最小限度的改编自U-Net

[42]架构。 W我们添加了一个小的全连接层，它将最深层的

特征和估计出的概率密度图结合起来去回归得到点的数量。

多数像素来说，它是平坦的，这使得训练变得不可行。

这个问题通过使用以x ∈ Y为中心高斯分布的均方误差
在局部得到缓解[58]。对比之下，方程 (5)中的WHD将

会随着x靠近y而减小，使得损失函数可以全局最小值

之外提供训练所需的信息。

5. CNN架构以及位置估计

在这个部分，我们将描述我们使用的全卷积网络，

以及我们我们怎么估计最终的位置。我们想强调这个

网络结构的设计在我们的工作中并不是一个有意义的

贡献。因此我们没有尝试去优化它。我们的主要贡献

是使用加权的豪斯多夫距离作为我们的损失函数。我

们采用了U-Net的网络结构[42]并对为了这个任务做了

微小的修改。类似于U-Net的网络已经被证明，在训练

时采用条件对抗生成网络的设置或 [22]者使用一个精

心调试的损失函数的情况下，它有能力精准地将输入

图片映射到输出图片上。图 3展示了U-Net的沙漏设计。

为了简单起见，没有显示出编码器中每一层与解码器

中之对称的层之间的残差连接。

这个FCN有两个区别很大的块。第一个块遵循

了CNN典型的结构。它由两个3× 3卷积（带1填充）重

复应用组成，其中每一层紧跟了一个批量归一化和一

个整流线性单元（ReLU）。在ReLU之后，我们使用了

不长为2的2× 2的最大池化操作来进行降采样。在下采

样的步骤中，我么将特征的通道数加倍，开始为64通

道，在最后5层使用512通道。

第二个块由以下元素重复应用组成：一个双线性

上采样，与一个来自下采样的特征图拼接，以及两

个3 × 3的卷积，其中每一个跟随一个批量归一化和

一个RELU激活层。最后一层是一个将网络输出映射到

一个单通道的的卷积层，p。

为了估计目标的图片中目标的数量，我们添加了

一个将最深层的特征和估计的概率图结合起来的分

支。这个分支将两个特征(一个1 × 1 × 512特征向量

和256 × 256概率图)结合到一个隐藏层中，然后使用一

个128维的特征向量输出一个值。然后我们使用看一

个ReLU激活函数来保证输出时正的，同时将其舍入到

最近的整数来获得我们最终对目标数量的估计，Ĉ。

虽然我们使用了特定的网络结构，其它任何结

构也可以被使用。唯一的要求是网络的输出图像必

须和输入图像的尺寸相同。选择FCN源自于其输出作

为WHD（方程 (5)）中的权重(px)的自然解释。在之前

的工作中[24, 11]，平均豪斯多夫距离的变体已经被成

功地应用在直接估计点集的非FCN网络中。但是，在

这些案例中，被估计集合的大小已经被最后一层的尺

寸给确定了。为了定位未知数量的物体，网络必须有

能力来估计数量可变的物体位置。因此，我们可以设

想，只要网络的输出使用方程(5)中的p，WHD也可以

应用到非FCN网络当中。

我们用于训练网络的的损失函数是一个方程(5)和

一个用于对目标数量进行回归的平滑的L1损失函数的

组合。最终的损失函数是

L(p, Y ) = dWH(p, Y ) + Lreg(C − Ĉ(p)), (9)

其中Y是包含了图像中目标的真正坐标的集合，

p是网络的输出，C = |Y |，以及Ĉ(p)是对目标数量的

估计。 Lreg(·)是回归项，这一项我们使用平滑的L1或

者Huber损失[21]，定义为

Lreg(x) =

0.5x2, for|x| < 1

|x| − 0.5, for|x| ≥ 1
(10)

当回归误差较大时，这种损失对离群点是鲁棒的，同

时在原点是可微的。

网络输出一个显著图p，用px ∈ [0, 1]指示在像素

点x有目标物体的置信度。图4在第二行展示了p。在评

估过程中，我们的最终目标是获得Ŷ，例如，对所有的

目标位置的估计。为了将p转化为Ŷ，我们对p进行了阈

值来获得像素T = {x ∈ Ω | px > τ}。我们可以使用三
种方法来决定使用哪一个τ。

1. 对于所有的图像使用一个常数τ。



 4. p





2. Otsu[36]

τ

3. BetaBMM

[45]Beta

p

τ

4p

T

EM [34]

Ĉ
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 (7)α = −1α = −2







batch sizeAdam [25, 39]

10−40.9

5

batch size64

10−30.9

(4)

AHDAHD



FAHD(MAE)

RMSEMAPE

MAE =
1

N

N
∑

i=1

|ei|, RMSE =

√

√

√

√

1

N

N
∑

i=1

∣

∣ei
∣

∣

2
(11)

MAPE = 100
1

N

N
∑

i=1
Ci �=0

∣

∣ei
∣

∣

Ci
(12)
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 7. BetapxτBMM

 1.r = 5

 (4) (11)-(12)

(Ĉ = C = 1)
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 95.2% 99.5% 88.1% 94.4%

 96.2% 99.5% 89.2% 95.0%

F 95.7% 99.5% 88.6% 94.6%

AHD 4.5 px 2.5 px 7.1 px 4.7 px

MAE 1.4 - 1.9 1.7

RMSE 1.8 - 2.7 2.3

MAPE 4.4% - 4.2% 4.3 %



τ

 8F
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 reffig:tau
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[62]

B

 2.r = 5

 Faster-RCNN 

 81.1% 95.2 %
 76.7% 96.2 %
F 78.8 % 95.7 %
AHD 7.6 px 4.5 px
MAE 4.7 1.4
RMSE 5.6 1.8
MAPE 14.8% 4.4 %

 3.r = 5



   AHD

Swirski [53] 77 % 77 % -

ExCuSe [13] 77 % 77 % -

Faster-RCNN 99.5 % 99.5 % 2.7 px

Ours 99.5 % 99.5 % 2.5 px

 4.r = 5

 Faster-RCNN 

 86.6 % 88.1 %
 78.3 % 89.2 %
F 82.2 % 88.6 %
AHD 9.0 px 7.1 px
MAE 9.4 1.9
RMSE 13.4 2.7
MAPE 17.7 % 4.2 %

 8. Fr

r





行了评估，并获得了19.9的MAE。尽管我们没有超过

专门针对人群计数进行微调的最新方法[29]，但我们可

以使用我们的通用方法获得可比的结果。我们期望将

来的改进，比如架构的改变或者使用迁移学习来进一

步提高性能。

使 用PyTorch实 现 的 使 用 加 权 豪 斯 多 夫

距 离 作 为 损 失 函 数 的 代 码 和 训 练 的 模 型 可

以 在https://github.com/javiribera/

locating-objects-without-bboxes上 获

得。

7.结论

我们提出了一个损失函数，用于在不需要包围盒

边界框的图像中的目标定位。这个损失函数时平均豪

斯多夫距离（AHD）的改进，用来衡量来两个无序点

集之间的距离。为了使AHD相对于网络输出可微，我

们在估计目标位置时考虑了网络的确定性。网络的输

出是一个用来定位的显著性图和一个估计目标的数量

的数字。我们的方法不受目标最大数量的限制，不需

要边界框，不需要候选区域或者滑动窗。这个方法可

以应用在边界框难以获得或者目标尺寸太小以至于边

界框的标定不实际的任务。我们在三个数据集上衡量

了我们的数据集，并且效果优于通用目标检测器和特

定任务技术。未来的工作将包括在开发出在单一网络

中的多目标定位器，以及使用更多现代的CNN架构。

致谢: 这项工作由高级研究项目局能源部（ARPA-E）资
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