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Abstract

Object detection with transformers (DETR) reaches com-
petitive performance with Faster R-CNN via a transformer
encoder-decoder architecture. Inspired by the great success
of pre-training transformers in natural language process-
ing, we propose a pretext task named random query patch
detection to Unsupervisedly Pre-train DETR (UP-DETR)
for object detection. Specifically, we randomly crop patches
from the given image and then feed them as queries to the
decoder. The model is pre-trained to detect these query
patches from the original image. During the pre-training,
we address two critical issues: multi-task learning and
multi-query localization. (1) To trade off classification and
localization preferences in the pretext task, we freeze the
CNN backbone and propose a patch feature reconstruction
branch which is jointly optimized with patch detection.
(2) To perform multi-query localization, we introduce
UP-DETR from single-query patch and extend it to multi-
query patches with object query shuffle and attention mask.
In our experiments, UP-DETR significantly boosts the
performance of DETR with faster convergence and higher
average precision on object detection, one-shot detection
and panoptic segmentation. Code and pre-training models:
https://github.com/dddzg/up—-detr.

1. Introduction

Object detection with transformers (DETR) [5] is a re-
cent framework that views object detection as a direct pre-
diction problem via a transformer encoder-decoder [39].
Without hand-designed sample selection [46] and non-
maximum suppression, DETR reaches a competitive per-
formance with Faster R-CNN [34]. However, DETR comes
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Figure 1: The VOC learning curves (AP5q) of DETR and

UP-DETR with ResNet-50 backbone. Here, they are trained

on trainval07+12 and evaluated on test2007. We

plot the short and long training schedules, and the learning

rate is reduced at 100 and 200 epochs, respectively.

with training and optimization challenges, which needs
large-scale training data and an extreme long training sched-
ule. As shown in Fig. 1 and Section 4.1, we find that DETR
performs poorly in PASCAL VOC [13], which has insuf-
ficient training data and fewer instances than COCO [28].

With well-designed pretext tasks, unsupervised pre-
training models achieve remarkable progress in both natu-
ral language processing (e.g. GPT [32, 33] and BERT [11])
and computer vision (e.g. MoCo [16, 9] and SWAV [7]). In
DETR, the CNN backbone (ResNet-50 [19] with ~23.2M
parameters) has been pre-trained to extract a good visual
representation, but the transformer module with ~18.0M
parameters has not been pre-trained. More importantly,


https://github.com/dddzg/up-detr

although unsupervised visual representation learning (e.g.
contrastive learning) attracts much attention in recent stud-
ies [16, 8, 14, 4, 6, 1], existing pretext tasks can not di-
rectly apply to pre-train the transformers of DETR. The
main reason is that DETR mainly focuses on spatial local-
ization learning instead of image instance-based [16, &, 14]
or cluster-based [4, 6, 1] contrastive learning.

Inspired by the great success of unsupervised pre-
training in natural language processing [1 1], we aim to un-
supervisedly pre-train the transformers of DETR on a large-
scale dataset (e.g. ImageNet), and treat object detection as
the downstream task. The motivation is intuitive, but ex-
isting pretext tasks seem to be impractical to pre-train the
transformers of DETR. To overcome this problem, we pro-
pose Unsupervised Pre-training DETR (UP-DETR) with
a novel unsupervised pretext task named random query
patch detection to pre-train the detector without any human
annotations — we randomly crop multiple query patches
from the given image, and pre-train the transformers for de-
tection to predict bounding boxes of these query patches in
the given image. During the pre-training procedure, we ad-
dress two critical issues as follows:

(1) Multi-task learning: Object detection is the coupling
of object classification and localization. To avoid
query patch detection destroying the classification fea-
tures, we introduce frozen pre-training backbone
and patch feature reconstruction to preserve the fea-
ture discrimination of transformers.

(2) Multi-query localization: Different object queries fo-
cus on different position areas and box sizes. To illus-
trate this property, we propose a simple single-query
pre-training and extend it to a multi-query version. For
multi-query patches, we design object query shuffle
and attention mask to solve the assignment problems
between query patches and object queries.

In our experiments, UP-DETR performs better than
DETR on PASCAL VOC [13] and COCO [28] object detec-
tion with faster convergence and better average precision.
Besides, UP-DETR also transfers well with state-of-the-art
performance on one-shot detection and panoptic segmen-
tation. In ablations, we find that freezing the pre-training
CNN backbone is the most important procedure to preserve
the feature discrimination during the pre-training.

2. Related Work
2.1. Object Detection

Most object detection methods mainly differ in posi-
tive and negative sample assignment. Two-stage detec-
tors [34, 3] and a part of one-stage detectors [27, 29] con-
struct positive and negative samples by hand-crafted multi-
scale anchors with the IoU threshold and model confidence.

Anchor-free one-stage detectors [38, 48, 22] assign positive
and negative samples to feature maps by a grid of object
centers. Zhang et al. [46] demonstrate that the performance
gap between them is due to the selection of positive and neg-
ative training samples. DETR [5] is a recent object detec-
tion framework that is conceptually simpler without hand-
crafted process by direct set prediction [37], which assigns
the positive and negative samples automatically.

Apart from the positive and negative sample selection
problem, the trade-off between classification and localiza-
tion is also intractable for object detection. Zhang et al. [45]
demonstrate that there is a domain misalignment between
classification and localization. Wu et al. [40] and Song et
al. [35] design two head structures for classification and lo-
calization. They point out that these two tasks may have op-
posite preferences. For our pre-training model, it maintains
shared feature for classification and localization. Therefore,
it is essential to take a well trade-off between these two
tasks.

2.2. Unsupervised Pre-training

Unsupervised pre-training models always follow two
steps: pre-training on a large-scale dataset with the pretext
task and fine-tuning the parameters on downstream tasks.
For unsupervised pre-training, the pretext task is always in-
vented, and we are interested in the learned intermediate
representation rather than the final performance of the pre-
text task.

To perform unsupervised pre-training, there are various
of well-designed pretext tasks. For natural language pro-
cessing, utilizing time sequence relationship between dis-
crete tokens, masked language model [ 1], permutation lan-
guage model [43] and auto regressive model [32, 33] are
proposed to pre-train transformers [39] for language repre-
sentation. For computer vision, unsupervised pre-training
models also achieve remarkable progress recently for vi-
sual representation learning, which outperform the super-
vised learning counterpart in downstream tasks. Instance-
based discrimination tasks [44, 41] and clustering-based
tasks [6] are two typical pretext tasks in recent studies.
Instance-based discrimination tasks vary mainly on main-
taining different sizes of negative samples [16, 8, 14] with
non-parametric contrastive learning [15]. Moreover, in-
stance discrimination can also be performed as parametric
instance classification [4]. Clustering-based tasks vary on
offline [6, 1] or online clustering procedures [7]. UP-DETR
is a novel pretext task, which aims to pre-train transformers
based on the DETR architecture for object detection.

3. UP-DETR

The proposed UP-DETR contains pre-training and fine-
tuning procedures: (a) the transformers are unsupervisedly
pre-trained on a large-scale dataset without any human an-
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Figure 2: The pre-training procedure of UP-DETR by random query patch detection. (a) There is only a single-query patch
which we add to all object queries. (b) For multi-query patches, we add each query patch to N/M object queries with object
query shuffle and attention mask. CNN is not drawn in the decoder of (b) for neatness.

notations; (b) the entire model is fine-tuned with labeled
data which is same as the original DETR [5] on the down-
stream tasks. In this section, we mainly describe how to
pre-train the transformer encoder and decoder with random
query patch detection.

As shown in Fig. 2, the main idea of random query patch
detection is simple but effective. Firstly, a frozen CNN
backbone is used to extract a visual representation with the
feature map f € RE*H*W of an input image, where C
is the channel dimension and H x W is the feature map
size. Then, the feature map is added with positional encod-
ings and passed to the multi-layer transformer encoder in
DETR. For the random cropped query patch, the CNN back-
bone with global average pooling (GAP) extracts the patch
feature p € R, which is flatten and supplemented with
object queries ¢ € R® before passing it into a transformer
decoder. Noting that the query patch refers to the cropped
patch from the original image but object query refers to po-
sition embeddings, which are fed to the decoder. The CNN
parameters are shared in the whole model.

During the pre-training procedure, the decoder predicts
the bounding boxes corresponding to the position of random
query patches in the input image. Assuming that there are
M query patches by random cropping, the model infers a
prediction fixed-set = {3; } ¥, corresponding to N object
queries (N > M). For better understanding, we will de-
scribe the training details of single-query patch (M = 1) in
Section 3.1, and extend it to multi-query patches (M > 1)
with object query shuffle and attention mask in Section 3.2.

3.1. Single-Query Patch

DETR learns different spatial specialization for each ob-
ject query [5], which indicates that different object queries
focus on different position areas and box sizes. As we ran-

domly crop the patch from the image, there is no any priors
about the position areas and box sizes of the query patch.
To preserve the different spatial specialization, we explic-
itly specify single-query patch (M = 1) to all object queries
(N = 3) as shown in Fig. 2a.

During the pre-training procedure, the patch feature p
is added to each different object query ¢, and the decoder
generates N pairs of predictions § = {9;}Y, to detect the
bounding box of query patch in the input image. Following
DETR [5], we compute the same match cost between the
prediction §s(;y and the ground-truth y; using Hungarian
algorithm [37], where 6 (%) is the index of y; computed by
the optimal bipartite matching.

For the loss calculation, the predicted result §; = (¢; €
R2?, b; € R*, p; € RY) consists of three elements: ¢; is the
binary classification of matching the query patch (¢; = 1)
or not (¢c; = 0) for each object query; b; is the vector
that defines the box center coordinates, its width and height
{z,y,w,h}. They are re-scaled relative to the image size;
p; is the reconstructed feature with C' = 2048 for the
ResNet-50 backbone typically. With the above definitions,
the Hungarian loss for all matched pairs is defined as:

N
L(y,9) = Z[)‘{ci}ﬁcls(civ Cs(iy) + Lie,=13 Loz (bi, bs(iy)
im1
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Here, L5 is the cross entropy loss over two classes (match
the query patch vs. not match), and the class balance weight
Ae,=13 = Land Ao, —oy = M/N. Ly, is a linear combi-
nation of ¢; loss and the generalized IoU loss with the same
weight hyper-parameters as DETR [5]. L., is the recon-
struction loss proposed in this paper to balance classifica-
tion and localization during the unsupervised pre-training,



which will be discussed in detail below.

3.1.1 Patch Feature Reconstruction

Object detection is the coupling of object classification and
localization, where these two tasks always have different
feature preferences [45, 40, 35]. Different from DETR, we
propose a feature reconstruction term L,... to preserve clas-
sification feature during localization pre-training. The mo-
tivation of this term is to preserve the feature discrimination
extract by CNN after passing feature to transformers. L, .
is the mean squared error between the ¢2-normalized patch
feature extracted by the CNN backbone, which is defined as
follows:
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3.1.2 Frozen Pre-training Backbone

With the patch feature reconstruction, the CNN backbone
parameters seriously affect the model training. Our moti-
vation is that the feature after transformer should have sim-
ilar discrimination as the feature after the CNN backbone.
Therefore, we freeze the pre-training backbone and recon-
struct the patch feature after the transformers by L,.... Sta-
ble backbone parameters are beneficial to transformer pre-
training, and accelerate the feature reconstruction.

As described above, we propose and apply feature recon-
struction and frozen backbone to preserve feature discrim-
ination for classification. In Section 4.5.1, we will analyze
and verify the necessity of them with experiments.

3.2. Multi-Query Patches

For general object detection, there are multiple object
instances in each image (e.g. average 7.7 object instances
per image in the COCO dataset). Moreover, single-query
patch may result in the convergence difficulty when the
number of object queries NV is large. Therefore, single-
query patch pre-training is inconsistent with multi-object
detection task, and is unreasonable for the typical object
query setting N = 100. However, extending a single-
query patch to multi-query patches is not straightforward,
because the assignment between M query patches and N
object queries is a specific negative sampling problem for
multi-query patches.

To solve this problem, we divide IV object queries into
M groups, where each query patch is assigned to N/M
object queries. The query patches are assigned to the ob-
ject queries in order. For example, the first query patch
is assigned to the first N/M object queries, the second
query patch to the second N/M object queries, and so on.
Here, we hypothesize that it needs to satisfy two require-
ments during the pre-training: (1) Independence of query

patches. All the query patches are randomly cropped from
the image. Therefore, they are independent without any
relations. For example, the bounding box regression of
the first cropping is not concerned with the second crop-
ping. (2) Diversity of object queries. There is no explicit
group assignment between object queries for the down-
stream tasks. In other words, the query patch can be added
to arbitrary N/M object queries ideally.

3.2.1 Attention Mask

To satisfy the independence of query patches, we utilize an
attention mask matrix to control the interactions between
different object queries. The mask matrix X € RV*N jg
added to the softmax layer of self-attention in the decoder
softmaz (QK " /v/dj; + X) V. Similar to the token mask
in UniLLM [12], the attention mask is defined as:

0,
Xi; = { —o0,

where X ; determines whether the object query ¢; attends
to the interaction with the object query g;. For intuitive
understanding, the attention mask in Fig. 2b displays 1 and
0 corresponding to 0 and —oo in (3), respectively.

i, j in the same group
otherwise

;o )

3.2.2 Object Query Shuffle

Groups of object queries are assigned artificially. However,
during the downstream object detection tasks, there are no
explicit group assignment between object queries. There-
fore, To simulate implicit group assignment between object
queries, we randomly shuffle the permutation of all the ob-
ject query embeddings during pre-training °.

Fig. 2b illustrates the pre-training of multi-query patches
with attention mask and object query shuffle. To improve
the generalization, we randomly mask 10% query patches
to zero during pre-training similarly to dropout [36]. In our
experiments, two typical values are set to N = 100 and
M = 10. Apart from such modifications, other training
settings are the same as those described in Section 3.1.

4. Experiments

We pre-train the UP-DETR using ImageNet [10] and
fine-tune the parameters on VOC [13] and COCO [28] for
object detection, one-shot detection and panoptic segmen-
tation. In all experiments, we adopt the UP-DETR model
(41.3M parameters) with ResNet-50 backbone, 6 trans-
former encoder, 6 decoder layers of width 256 with 8 at-
tention heads. Referring to the open source of DETR?, we
use the same hyper-parameters in the proposed UP-DETR

3In our further study, we find that the object query shuffle is not helpful.
More details are included in the appendix.
“https://github.com/facebookresearch/detr



and our DETR re-implementation. We annotate R50 and
R101 short for ResNet-50 and ResNet-101.

Pre-training setup. UP-DETR is pre-trained on the Ima-
geNet training set without any labels. The CNN backbone
(ResNet-50) is pre-trained with SWAV [7]. As the input
image from ImageNet is relatively small, we resize it such
that the shortest side is within [320,480] pixels while the
longest side is at most 600 pixels. Given the image, we
crop the query patches with random coordinate, height and
width, which are resized to 128 x 128 pixels and trans-
formed with the SimCLR-style [8] without horizontal flip-
ping. AdamW [30] is used to optimize the UP-DETR, with
the initial learning rate of 1 x 10~* and the weight decay
of 1 x 10~%. We use a mini-batch size of 256 on 8 V100
GPUs for 60 epochs with the learning rate multiplied by 0.1
at 40 epochs.

Fine-tuning setup. The model is initialized with pre-
training UP-DETR parameters and fine-tuned for all the pa-
rameters (including CNN) on VOC and COCO. We fine-
tune the model with the initial learning rate 1 x 10~ for
transformers and 5 x 1072 for CNN backbone, and the
other settings are same as DETR [5] on 8 V100 GPUs. The
model is fine-tuned with short/long schedule for 150/300
epochs and the learning rate is multiplied by 0.1 at 100/200
epochs, respectively.

4.1. PASCAL VOC Object Detection

Setup. The model 1is fine-tuned on VOC
trainvalO7+12 (~16.5k images) and evaluated on
test2007. We report COCO-style metrics: AP, AP5q
(default VOC metric) and AP75. For a full comparison,
we report the result of Faster R-CNN with the R50-C4
backbone [7], which performs much better than R50 [25].
DETR with R50-C4 significantly increases the computa-
tional cost than R50, so we fine-tune UP-DETR with R50
backbone.

Model/Epoch AP AP AP75
Faster R-CNN | 56.1 82.6 62.7
DETR/150 499 74.5 53.1
UP-DETR/150 | 56.1 (+6.2) 79.7 (+5.2) 60.6 (+7.5)
DETR/300 54.1 78.0 58.3
UP-DETR/300 | 57.2 (+3.1) 80.1 (+2.1) 62.0 (+3.7)

Table 1: Object detection results trained on PASCAL VOC
trainvalO7+12 and evaluated on test2007. DETR
and UP-DETR use R50 backbone and Faster R-CNN uses
R50-C4 backbone. The values in the brackets are the gaps
compared to DETR with the same training schedule.

Results. Table 1 shows the compared results of PASCAL
VOC. We find that the DETR performs poorly in PASCAL
VOC, which is much worse than Faster R-CNN by a large

gap in all metrics. UP-DETR significantly boosts the per-
formance of DETR for both short and long schedules: up to
+6.2 (+3.1) AP, +5.2 (+2.1) AP5¢ and +7.5 (+3.7) AP5 for
150 (300) epochs, respectively. Moreover, UP-DETR (R50)
achieves a comparable result to Faster R-CNN (R50-C4)
with better AP. We find that both UP-DETR and DETR per-
form a little worse than Faster R-CNN in AP5y and AP75.
It may come from different ratios of feature maps (C4 for
Faster R-CNN) and no NMS post-processing (NMS lowers
AP but slightly improves AP5g).

Fig. 3a shows the AP (COCO style) learning curves on
VOC. UP-DETR significantly speeds up the model conver-
gence. After the learning rate reduced, UP-DETR signif-
icantly boosts the performance of DETR with a large AP
improvement. Noting that UP-DETR obtains 56.1 AP after
150 epochs, however, its counterpart DETR (scratch trans-
formers) only obtains 54.1 AP even after 300 epochs and
does not catch up even training longer. It suggests that pre-
training transformers is indispensable on insufficient train-
ing data (i.e. ~ 16.5K images on VOC).

4.2. COCO Object Detection

Setup. The model is fine-tuned on COCO train2017
(~118k images) and evaluated on val2017. There are
lots of small objects in COCO dataset, where DETR per-
forms poorly [5]. Therefore, we report AP, AP5y, AP7s5,
APg, APj; and APy for a comprehensive comparison.
Moreover, we also report the results of highly optimized
Faster R-CNN-FPN with short (3x) and long (9 x) training
schedules, which are known to improve the performance re-
sults [17].

Results. Table 2 shows the results on COCO with other
methods. With 150 epoch schedule, UP-DETR outperforms
DETR by 0.8 AP and achieves a comparable performance
as compared with Faster R-CNN-FPN (3 x schedule). With
300 epoch schedule, UP-DETR obtains 42.8 AP on COCO,
which is 0.7 AP better than DETR (SwAV CNN) and 0.8
AP better than Faster R-CNN-FPN (9 x schedule). Over-
all, UP-DETR comprehensively outperforms DETR in de-
tection of small, medium and large objects with both short
and long training schedules. Regrettably, UP-DETR is still
slightly lagging behind Faster R-CNN in APg, because of
the lacking of FPN-like architecture [26] and the high-cost
attention operation.

Fig. 3b shows the AP learning curves on COCO. UP-
DETR outperforms DETR for both 150 and 300 epoch
schedules with faster convergence. The performance im-
provement is more noticeable before reducing the learning
rate. After reducing the learning rate, UP-DETR still holds
the lead of DETR by ~ 0.7 AP improvement. It suggests
that pre-training transformers is still indispensable even on
sufficient training data (i.e. ~ 118K images on COCO).



Model Backbone  Epochs | AP AP AP;5 APgs APy, AP
Faster R-CNN f{ [26] R101-FPN - 36.2 59.1 390 182 390 482
Mask R-CNN 7 [18] R101-FPN - 38.2 603 417 20.1 41.1 50.2
Grid R-CNN 7 [31] R101-FPN - 41.5 609 445 233 449 531
Double-head R-CNN [40] R101-FPN - 41.9 624 459 239 452 558
RetinaNet { [27] R101-FPN - 39.1 59.1 423  21.8 427 50.2
FCOS 7 [38] R101-FPN - 41.5 60.7 450 244 448 51.6
DETR [5] R50 500 42.0 624 442 20.5 458 61.1
Faster R-CNN R50-FPN  3x 40.2 61.0 438 242 435 520
DETR (Supervised CNN) R50 150 39.5 603 414 175 430 59.1
DETR (SwAV CNN) [7] R50 150 39.7 603 417 185 438 575
UP-DETR R50 150 40.5 (+0.8) 60.8 426 190 444 60.0
Faster R-CNN R50-FPN  9x 42.0 62.1 455 266 454 534
DETR (Supervised CNN)  R50 300 40.8 612 429 20.1 445 603
DETR (SwAV CNN) [7] R50 300 42.1 63.1 445 19.7 463 609
UP-DETR R50 300 42.8 (+0.7) 63.0 453 208 471 61.7

Table 2: Object detection results trained on COCO train2017 and evaluated on val2017. Faster R-CNN, DETR and
UP-DETR are performed under comparable settings. { for values evaluated on COCO test-dev, which are always slightly
higher than val12017. The values in the brackets are the gaps compared to DETR.
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Figure 3: AP (COCO style) learning curves with DETR and UP-DETR on VOC and COCO. Models are trained with the
SwAV pre-training ResNet-50 for 150 and 300 epochs, and the learning rate is reduced at 100 and 200 epochs, respectively.

4.3. One-Shot Detection

Given a query image patch whose class label is not in-
cluded in the training data, one-shot detection aims to detect
all instances with the same class in a target image. One-shot
detection is a promising research direction that can detect
unseen instances. With feeding query patches to the de-
coder, UP-DETR is naturally compatible to one-shot detec-
tion task. Therefore, one-shot detection can also be treated
as a downstream fine-tuning task of UP-DETR.

Following the same one-shot detection setting as [20],

we crop the query image patch as the query patch to the
DETR decoder. we train DETR and UP-DETR on VOC
2007train val and 2012train val sets with 300
epochs then evaluate on VOC 2007test set. Table 3
shows the comparison to the state-of-the-art one-shot de-
tection methods. Compared with DETR, UP-DETR signifi-
cantly boosts the performance of DETR on both seen (+22.8
AP?° gain) and unseen (+15.8 AP%° gain) classes. More-
over, we show that UP-DETR outperforms all methods in
both seen (+7.9 AP gain) and unseen (+4.0 AP°° gain)



Model seen class ) unseen class
plant | sofa | tv car | bottle | boat | chair | person | bus | train | horse | bike | dog | bird | mbike | table | AP®® | cow | sheep | cat | aero | AP?®
SiamFC [2] 32 | 228 50 [ 167 | 05 8.1 1.2 42 222|226 | 354 | 142|258 | 11.7 | 19.7 | 278 | 151 | 6.8 | 2.28 | 31.6 | 124 | 13.3
SiamRPN [23] 1.9 157 | 45 | 128 1.0 1.1 6.1 8.7 7.9 6.9 174 | 17.8 | 205 | 7.2 18.5 5.1 9.6 159 | 157 | 21.7 | 35 14.2
CompNet [47] | 284 | 41.5 | 65.0 | 66.4 | 37.1 | 49.8 | 16.2 31.7 69.7 | 73.1 | 75.6 | 71.6 | 614 | 523 | 634 39.8 | 52.7 | 753 | 60.0 | 479 | 253 | 52.1
CoAE [20] 30.0 | 549 | 64.1 | 66.7 | 40.1 | 54.1 | 147 60.9 775 | 783 | 779 | 732 | 80.5 | 70.8 | 724 46.2 | 60.1 | 839 | 67.1 | 75.6 | 46.2 | 68.2
Lietal [24] 33.7 | 582 | 67.5 | 72.7 | 40.8 | 48.2 | 20.1 55.4 782 | 79.0 | 76.2 | 746 | 81.3 | 71.6 | 72.0 48.8 | 61.1 | 743 | 68.5 | 81.0 | 524 | 69.1
DETR 114 | 422 | 44.1 | 634 | 149 | 40.6 | 20.6 63.7 62.7 | 71.5 | 59.6 | 52.7 | 60.6 | 53.6 | 54.9 22.1 | 46.2 | 62.7 | 552 | 654 | 459 | 573
UP-DETR 46.7 | 61.2 | 75.7 | 81.5 | 54.8 | 57.0 | 44.5 80.7 745 | 86.8 | 79.1 | 80.3 | 80.6 | 72.0 | 70.9 578 | 69.0 | 809 | 71.0 | 804 | 59.9 | 73.1
Table 3: One-shot detection results on VOC 2007test set.
Model PQ SQ RQ |PQ™ SQ RQ'™ | PQt SQt RQSt | APseY
PanopticFPN++ [21] | 424 793 51.6 | 492 824 588 323 748 406 | 37.7
UPSNet [42] 425 780 525|486 794 59.6 334 759 417 | 343
UPSNet-M [42] 43.0 79.1 528 | 489 79.7 59.7 341 782 423 | 343
DETR [5] 443 800 545|492 806 603 370 791 459 | 329
UP-DETR 44.5 803 54.7 | 49.6 80.7 60.7 369 789 458 | 34.0

Table 4: Panoptic segmentation results on the COCO val dataset with the same ResNet-50 backbone. The PanopticFPN++,

UPSNet and DETR results are re-implemented by Carion et al. [5].

Case | Frozen CNN Feature Reconstruction | APy
DETR scratch transformers 74.5
(@ 74.0
(b) v 78.7
(©) v 62.0
(d) v v 78.7

Table 5: Ablation study on frozen CNN and feature recon-
struction for pre-training models with AP5y. The experi-
ments are fine-tuned on PASCAL VOC with 150 epochs.

classes of one-hot detection. It further verifies the effective-
ness of our pre-training pretext task.

4.4. Panoptic Segmentation

Panoptic segmentation [21] is a natural extension to
DETR by adding a mask head on the top of the decoder
outputs. Following the same panoptic segmentation train-
ing schema as DETR [5], we fine-tune UP-DETR for box
only annotations with 300 epochs. Then, we freeze all the
weights of DETR and train the mask head for 25 epochs.

Table 4 shows the comparison to state-of-the-art methods
on panoptic segmentation with the ResNet-50 backbone. As
seen, UP-DETR outperforms DETR® with +0.2 PQ, +0.4
PQ!" and +1.1 AP**9.

4.5. Ablations

For ablation experiments, we pre-train UP-DETR for 15
epochs with the learning rate multiplied by 0.1 at the 10-
th epoch on ImageNet. We fine-tune models on VOC ob-

SWith a bug fixed in github.com/facebookresearch/detr/
issues/247, the DETR baseline is better than paper report.
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Figure 4: Learning curves of VOC (APs5() with four differ-
ent pre-training UP-DETR models and DETR. The models
trained with 150 epochs corresponds to the models in Ta-
ble 5 one-to-one.

ject detection following the setup in Section 4.1 with 150
epochs®.

4.5.1 Frozen CNN and Feature Reconstruction

To illustrate the importance of patch feature reconstruction
and frozen CNN backbone of UP-DETR, we pre-train four
different UP-DETR models with different combinations of
whether freezing CNN and whether adding feature recon-
struction.

%More ablations are included in the appendix.
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Figure 5: The unsupervised localization of patch queries with UP-DETR. The first line is the original image with predicted
bounding boxes. The second line is query patches cropped from the original image with data augmentation. The value in the

upper left corner of the bounding box is the model confidence.

Table 5 shows AP and APs( of four different pre-training
models and DETR on VOC with 150 epochs. As shown in
Table 5, not all pre-trained models are better than DETR,
and pre-training models (b) and (d) perform better than the
others. More importantly, without frozen CNN, pre-training
models (a) and (c) even perform worse than DETR. It con-
firms that freezing pre-trained CNN is essential to pre-train
transformers. In addition, it further confirms the pretext
(random query patch detection) may weaken the feature dis-
crimination without the freezing pre-training CNN weights.

Fig. 4 plots the AP5( learning curves of four different
pre-training models and DETR, where the models in Fig. 4
correspond to the models in Table 5 one-to-one. As shown
in Fig. 4, model (d) UP-DETR achieves faster convergence
at the early training stage with feature reconstruction. The
experiments suggest that random query patch detection is
complementary to the contrastive learning for a better vi-
sual representation. The former is designed for the spatial
localization with position embeddings, and the latter is de-
signed for instance or cluster classification.

It is worth noting that UP-DETR with frozen CNN and
feature reconstruction heavily relies on a pre-trained CNN
model, e.g. SWAV. Therefore, we believe that it is a promis-
ing direction for further investigating UP-DETR with ran-
dom query patch detection and contrastive learning together
to pre-train the whole DETR model from scratch.

4.6. Visualization

To further illustrate the ability of the pre-training model,
we visualize the unsupervised localization results of given
patch queries. Specifically, for the given image, we manu-
ally crop several object patches and apply the data augmen-
tation to them. Then, we feed these patches as queries to the
model. Finally, we visualize the model output with bound-
ing boxes, whose classification confidence is greater than
0.9. This procedure can be treated as unsupervised one-shot

detection or deep learning based template matching.

As shown in Fig. 5, pre-trained with random query
patch detection, UP-DETR successfully learns to locate the
bounding box of given query patches and suppress the du-
plicated bounding boxes . It suggests that UP-DETR with
random query patch detection is effective to learns the abil-
ity of object localization.

5. Conclusion

We present a novel pretext task called random query
patch detection to pre-train the transformers in DETR. With
unsupervised pre-training, UP-DETR significantly outper-
forms DETR on object detection, one-shot detection and
panoptic segmentation. We find that, even on the COCO
with sufficient training data, UP-DETR still performs better
than DETR.

From the perspective of unsupervised pre-training mod-
els, pre-training CNN backbone and pre-training transform-
ers are separated now. Recent studies of unsupervised pre-
training mainly focus on feature discrimination with con-
trastive learning instead of specialized modules for spatial
localization. However, for UP-DETR pre-training, the pre-
text task is mainly designed for patch localization by po-
sitional encodings and learn-able object queries. We hope
that an advanced method can integrate CNN and transform-
ers pre-training into a unified end-to-end framework and ap-
ply our pre-training tasks to more detection related frame-
works.
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Appendix
A. More ablations

A.l. Single-Query Patch vs. Multi-Query Patches

We pre-train two UP-DETR models with single-query
patch (M = 1) and multi-query patches (M = 10). The
other hyper-parameters are set as mentioned in the paper.

Table 6 shows the results of single-query patch and
multi-query patches. Compared with DETR, UP-DETR
surpasses it in all AP metrics by a large margin no mat-
ter with single-query patch or multi-query patches. When
pre-training UP-DETR with the different number of query
patches, UP-DETR (M = 10) performs better than UP-
DETR (M = 1) on the fine-tuning task, although there are
about 2.3 instances per image on VOC. Therefore, we adopt
the same UP-DETR with M = 10 for both VOC and COCO
instead of varying M for different downstream tasks.

Model ‘ AP AP50 AP75
DETR 49.9 74.5 53.1
UP-DETR (M=1) | 53.1(+32) 772H27) 574
UP-DETR (M=10) | 54.9 (+5.0) 78.7 (+42) 59.1

Table 6: The ablation results of pre-training models with
single-query patch and multi-query patches on PASCAL
VOC. The values in the brackets are the gaps compared to
the DETR with the same training schedule.

A.2. Attention Mask

After downstream task fine-tuning, we find that there is
no noticeable difference between the UP-DETR pre-trained
w/ and w/o attention mask. So, we plot the loss curves in the
pretext task to illustrate the effectiveness of attention mask.

As shown in Fig. 6, at the early training stage, UP-
DETR without attention mask has a lower loss. However, as
the model converging, UP-DETR with attention mask over-
takes it with a lower loss. It is reasonable because the loss
is calculated by the optimal bipartite matching. During the
early training stage, the model is not converged, and the
model without attention mask takes more object queries into
attention. Intuitively, the model is easier to be optimized
due to introducing more object queries. However, there is a
mismatching between the query patch and the ground truth
for the model without attention mask. As the model con-
verging, the attention mask gradually takes effect, which
masks the unrelated query patches and leads to a lower loss.

A.3. Object Query Shuffle

Without object query shuffle, the groups of object
queries are assigned fixedly during the pre-training. How-
ever, for the downstream object detection tasks, there is no
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Figure 6: The loss curves of pre-training procedure for UP-
DETR w/ and w/o the attention mask.
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Figure 7: The AP curves of COCO fine-tuning procedure
for UP-DETR w/ and w/o the object query shuffle. The
learning rate is reduced at 200 epochs.

explicit group assignment between object queries. So, we
design the object query shuffle to simulate implicit group-
ing between object queries.

The motivation of object query shuffle is clear, how-
ever, we find that object query shuffle is not helpful. In
the pre-training and fine-tuning phase, the model w/o ob-
ject query shuffle converges faster. Fig. 7 shows the fine-
tuning result of COCO w/ and w/o object query shuffle.
As seen, without object query shuffle, the model converges
faster and achieves 43.1 AP (higher than 42.8 AP with ob-
ject query shuffle pre-training). The result indicates that
fixed group is beneficial for training object queries. Shuf-
fle may disturb the spatial preference learning. There-
fore, in our open-source code (https://github.com/
dddzg/up—-detr), we upload the pre-training model
without object query shuffle.
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2.2. LB HIZ

0 W B R TR A5 B SR G T AP 8 X B T
25 1 KA SR SE AT T ZR A N AT 55 10 2 $iidk A7
O . R R TIGR,  FEAT 55 R R b R B ok
(7, BATVEN MR 22 ) B (R R, AR T
PSSR

N T AT B TSR, B SRR R A5
T ERIE S A, FIHEEGRL, FR0E S B,
B S R [ S [B] R A [32,33) 2 I 1 (] 4 5%
A, XU ZkTransformer[32,33] 7B S £n. fE1HHE
WU DL T7 TH, B P A8 A Bl TR AN R 2 2] O
[ITREENi € ST <7D S N 6 K i 4 = 2
B, FE TSP AR B 55 R0 3 T RS AR AT 55 R il
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PAT . BT BHEMUT S BAL6, 15BN L FE[7]
I 7. UP-DETR /& — Ml M ii{E5%, §EET DETR
2} 5%4 Transformer i AT TN 2R LAIEAT ST GG

3. UP-DETR

$E i) UP-DETR & & Ml kAR T :  (a)
Transformer?E KX AUBLE I 45 _F RS B W HIZR, &H
AT ARFF S (b) BB NS LS55
DETR[5#H A il ks

WHAHEAT O . AT, FRATEZANA 7 ] H
HLA WM TR K T 2R Transformer 4 i 25 A #5258 o
W 2 Frow, BEALA AN TR ) 3 T AR T BT A R

B2, FUFRSEH CNN £ T A mu £ e 2



(B.DDEEED)

random query patch

input image

(a) single-query patch (N=3, M=1)

B 2: B RENLE A TRNEI BT DETR KIFIIZEE.

HPAENRERAKFT .

input image

" Lpor = x,y.w, h

Lys = lor0
B (L,ec = feature

Transformer
Decoder

random query patch

(b) multi-query patch (N=6, M=2)

(a) AE—NER—HERHHT, BATEMH
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EERBHANZEAT. CNN BEE (B) HIFRESH S AR,

WL Zos — M AR, Hrp ¢ RliERS, HX
WRFHEE RN R85, HAEgmSRInfrEE, Jf
1% %) DETR T HI1Z JZ TransformerZi b 25 . %7 T FEAL
BT E WA T, B4R (GAP) ) CNN &

FARIU T AN THHE p e RS, BASF IR T M G853

g € RC 7644 H % i3 3| Transformer f# 3 5% 2§ . 157E

B, EWANT 8 A0 ARG B R P BRI R BT AN T,
BXF A TR KRR ARSI AL B RN . CNNSHL
FEREAM R L

FEPN Gt e, S 25 T 5 5 A\ B & BE L &
PRI A7 B AR B0 A . Rl RENLEBT T M
ANEWRN T AR TR 7T N X R A

BT 4 p = (v VY AN AR (NSMD

N T EAFHEAE, BATRAESE 3.1 b b A A
T M=D [ZRgnTs, JRREY RIS 3.2 WA
AR R ERPEAEERS N2 AT (M>1D .

3.1. BAEABAER

DETR NEEANKT R A H)[5]% I AR 2 H 5 114, X
IR [A (6 S0t R A i) L T AN R A A7 B X Ay
FER/N o MBATAEG R BEHLE BT AN T I, X 2 4k
TR B X SN TR RN AR e . N TR A
I A% 114k, RATI RN ETE ST S A (N=3)
R BERANT (M=) , WE 2 () Fix.
TEWNGRIEFE R, AN TRAE p W0 AN A ] %

QW q B, EISEER N HFI = ()Y, b

For i g N G AR i AR T I SHHE . /£ DETR(S]
Z G, FAME R F R EE 37 ETMAE DETR[5]Z

5 AT 9 FAUSE T BB Y, S U FE
¥, 2 WA RO TCREAR Y, 3o e b — ST 526
e

TR, TSR L, h= A agdk: ok
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MEF A KR, TS X, y, w, h}fIE. Bl
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(¥ C=2048 [MHFERFAL. MRYE LRE L, Fra ILECK 1
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N
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i=1

+ Lic,=1} Lrec(Pis Paiy)]- (n
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VCEE) , AP A A & ﬂ{cizl} =11 ﬂ'{ci:O} =M/N

L
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3.1.1 BANEFDIRRER
XoF GAG I HE XS R AR ELL R A, P IX TS
Bog B RNE R W [45, 40, 35]. 5 DETR R~

[, FRATR T — AR T L 7E A AL T4
R R RS E . X AR RIBIHLE N T R
CNN' 7E4445 4% 3 £ Transformer J5 [165 1 1R 51 #2 L
Y. L, /& CNN ETHI L A ferh T4E 2 i)
BISITRE, i SUF

2

Pi 13‘;;( i)

—rt (2)
llp:ll, ”1’5(5)”2

Lrec(ps, ﬁ&(a)) = .
2

3.1.2 HETNGET ML

AN THRAHER B, CNN BTS00 H e | B8
I, FATIBIHLZ, Transformer i f4F 1 1%
CNN =T J5 R AHARI X Ao PRI, FRATTRSS 1
N3+, IFHEE 7 Transformer J5 ()% T HFF1E

L. . ¥EMETZSHAF T Transformer K FI,  FF

T 1R B

o BT, BATTHR W OF R R AR A AR 5 TR R
FRRFER A ABEAT 7096 7R3 4.5.1 Tirp, RATHE
TSGR T AR S AT s LA

3.2. ZEEHBAERF

XTI R, AR BT EA 2R
(Blhn: 75 COCO HtRFH iRk E G+, Figa
7.7 ARREH] o b, BRI R A RN R
KIS, BAEWRANT AT RES SRS AE. Kk,
AT W5 20 GG AR S5 A — 50 X T
X RAWREN=100 NEH. SR, R EENT
VIR Z BEWAN T IR, ROy M A&l T A
N MR AW 2 [ F 2 BEx T2 B T2 — e
(1 SRAE 1)

N RPN, A N A RERRD A M
AN, AR AN T #P O BCS N/M X R &M
AT FERHZIT 2 Boga 3 R AW . B, R

—ANEWEN T HEEE A NM W REH, KFHE
ANEWAN T A A N/MI G A, 2525 fE X B,
FRA R AR " T TN 5 T ) 7 S 7 R

(D EWANT B BrE A T 302 A EHE
REEHLECET SR . R, BRI, AR
R Bl B — UEBT R S [R5 5 8 RGBT TRk .
(2) XWNREWPZFEE. 75 FIFATS X S Ak 2 5
B BARMESE. Ba)Ed, A T LR INENE
B N/M WREHF.

3.2.1 ERAHEK

N T RN TR, AT AN
A Sk 4 1) AN [) 6 2 ) 2 TR B A8 HL . R B
XeR™ B & ¥ & W 2 M B &%
Softmax(QKT/\/d_k+X)V FK AL T 4 JHE A AE

UniLM[12]7, VE & SR e N
0,
X, j = { i,

X, 87— A b e Ferb s R g, T A E

i, j in the same group
otherwise

3)

G\ g, M H. Ay 7 EREER, BRI

BLAE & A 2bH 70 5] SR i) 1 387 0,0 FoR —o0 &

3.2.2 XRE M

SR E AR N TR . (B2, 75 Rt S NITE %
HlE], S EREREERRMAHSE. Bk, A7
L R AW B A B R G, BRATTEE FR0I 2R a] BE AL
ek T A St R A IR A B HES

w2 R, B TR R SRR A A e
M2 EWAN T INZ. AT Rmzitt, BATEI
SRR 10% M A AN T BEHLAE RS A TR TIR H
[36]. TEFRATHISLEGH, BANBE X E Y N=100
Al M=10. FrxEEeish, HMmilgkE 5% 3.1 i
BT 1 25 4 B AH [+

4. SKHAER

FAMER ImageNet[10]%} UP-DETR #EAT FliI <, FXt
TEVOC[13]F1 COCO[281XF SN 2S5, — i



R Az Jeordl. ERTE RS, BRATHRA T H
A ResNet-50 =T UP-DETR #i%! (41.3M S30 ,
6 NTransformerdmfia%, 6 5N 256 HIAH 8 NME
BISLHRID A2 . T DETR HIJFE, FRATERH
FJUP-DETR {41 FH AH 5] ff) /6 2 45 LA R 3RATT 0 35048 11
P, ATERT RS0 1 R101, {FAResNet-50
Al ResNet-101 HI%ES .

FVIZRAT % B . UP-DETR 7£ ImageNet IlZx8E ik
TSNSk, WHALMFRZ . CNN FEF (ResNet-50)
KH SWAV[7]TlZk. HTKH ImageNet HI%iAE
GARXTE AN s FRATTIR AL R/, A A i (132 7E[320,480]
BEN, MERKKILREZE 600 BEN. HelIE,
WAV I HAGRENLAAR, SRR B R B e, 4
oK N E B N 128x128 1§ =, M H
SimCLR-style[8] i 17 #% 4t , 1 A 347 K ~F 8 #% .
AdamW([30] /i T 1 1k UP-DETR , #] U % 2] R A

Ix10* i E RN 1x10™ . FATE SVI00GPU

FH 60 ANEFHAGEF 256 K/NE/NILEREA, 22 40 4R
AR ] E L, 0.1,

AR E. ZAEALEE IS UP-DETR S50#4T
THIUEA, FEXF VOC F1 COCO LKA S (f

FE CNNDHEAT T80 AV S 2 I1x 107" 3k

A AN S AT ] 4 F Transformer 1 5x107° %

T CONN EF, Hihix#ELYE 8VIOOGPU L 1
DETR[S]HHH . iZ#% A 150/300 48, 7E 100/200 12
S1E 53Tl 0.1,

4.1. PASCAL VOC B ### 1

Model/Epoch AP AP;‘,[] AP75
Faster R-CNN | 56.1 82.6 62.7
DETR/150 499 74.5 531
UP-DETR/150 | 56.1 (+6.2) 79.7(+5.2) 60.6 (+7.5)
DETR/300 54.1 78.0 58.3
UP-DETR/300 | 57.2 (+3.1) 80.1 (+2.1) 62.0 (+3.7)

£ 1: TR voc Bl 07+12 BN SRIER, UKk
2007 £EMRFIEf . DETR A1 UP-DETR f/ R50 £F, &
I R-CNNEF] R50-C4 E£F. HESHHERERAA MRS
YIHRIB DETRZ I (I ZEHE .

FriG . iZBALEVOC trainval07+12 (£ 16.5k B4
AT T MO, FETEtest2007 HEAT T VR . FRATIRA

TCOCORFEHIEH: AP, APS0 (ERIAFIVOC JE=E)
HAPT75. N 1 AT A B LLAL, FRATR G AR
R-CNN 5 R50-C4 EF[71M4 R, MR
RS0[25] 24182 . f#if] R50-C4 [¥) DETRLL R50 &3
Bom Tt ERA, FIEEATH RSO 3R A
UP-DETR.

WIRLGEHR. £ 1 878 TPASCAL VOCHIELEZE . B
i1 ¥ DETR fEPASCAL VOCH RI A4, hFaster
R-CNN % %, fEifH b LAA IR KM 28R .
UP-DETR & ## s  DETR MITERE: 20 BILE 150
(300) HFARHI+6.2 (+3.1) AP, +52 (+2.1) AP50 Al
+7.5 (+3.7) AP75. It4h, UP-DETR (R50) Hf§ 7 5
R E L) AP [EE R R-CNN (R50-C4) EBLI4s

K. FATKIMDETR) AP, F1 AP, #B Lt Faster R-CNN

HWE—, EHRCRE AR LA REEE (C4 AT
Faster R-CNN) , Ti¥%E& NMS /a3 (NMS LT

AP, ERIMIEET AP) .

3alizR TVOC LR AP (COCO WUt 23] izk. E
PARTE VIR NN S Y1 S G e U 2 (Y =
UP-DETR & # #2 = | DETR [ ¥4 fE . V7 $UP-DETR
75 150 1RJE 3515 56.1AP, #Rifi, ‘©XH M) DETR (&4
Transformer) BIf§i7E 300 185t A 3518 54.1AP, HZEA
RefE FH KM, xR, BHTINGEHEEAL, Tl
ZiTransformers2 AN A BRAD ). (£ 16.5KANVOC L ¥
%O

4.2. COCOXt S Al

RERF. ZHAZECOCO train2017 (£ 118kK K1)
AT THOA, HFAEVal2017 BE4T T PR . ZECOCO%TE
EhHETZINER, Hf DETR RIAES]. K,

FARE AP, AP50, AP75, APs, APm Al APl ¥4y
it . A, BATEMR G T & AL AL I Faster
R-CNN-FPN f455R, BAR (3X) fK (9X) %
I E] e, X e BT DL v RE 4 R 171

MRGER., £ 2 HRT COCO HHATTEEMEE R, #
150 fXH, UP-DETRI¥IAPH&H7 ELDETRYLF 0.8, L5 5 PR
R-CNN-FPN (3 X 1% AHEL, ©HAS 7RI PERE .

it 300 fLiI14E, UP-DETR 7£COCO_L3k15 42.8AP,

tt. DETR (SWAVCNN) 4f 0.7AP, [t Faster R-CNN-FPN
(OX &R 45 0.8AP. KIIKUL, UP-DETRTEAZM H
N, KRR 5T AT T DETR. BARMZ, HTHZ



Model Backbone  Epochs | AP APsy AP;; APs APy, AP
Faster R-CNN 71 [20] RIOI-FPN - 36.2 59.1 390 182 390 482
Mask R-CNN 71 [1¥] R101-FPN - 38.2 60.3 41.7 20.1 41.1 502
Grid R-CNN 71 [31] R101-FPN - 41.5 60.9 44.5 233 449 53.1
Double-head R-CNN [40] RI101-FPN - 41.9 624 459 239 452 558
RetinaNet { [27] RI101-FPN - 39.1 59.1 423 21.8 427 50.2
FCOS 1 [3%] R101-FPN - 41.5 60.7 450 244 448 516
DETR [5] R50 500 42.0 624 442 205 458 61.1
Faster R-CNN R50-FPN  3x 40.2 61.0 438 242 435 520
DETR (Supervised CNN)  R50 150 39.5 60.3 414 17.5 43.0 59.1
DETR (SwAV CNN) [7] R50 150 39.7 60.3 41.7 185 438 575
UP-DETR R50 150 40.5 (+0.8) 60.8 426 19.0 444  60.0
Faster R-CNN R50-FPN  9x 42.0 62.1 455 26,6 454 534
DETR (Supervised CNN)  R50 300 40.8 61.2 429 20.1 445 60.3
DETR (SwAV CNN) [7] R50 300 42.1 63.1 445 19.7 463 60.9
UP-DETR R50 300 428 (+0.7) 63.0 453 208 471 61.7

R 2: 2017 £ COCO FIFEINKH B RNLER, HT 2017 F#TIFE. ERE R-CNN, DETR
UP-DETR #RAXMKBE THITH £ X T COCO WX RHIHEHE, EMNSRBHET 2017 £

) val, $ES5HEERS DETR MEKIREIER.
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DETR DETR
55r —— UP-DETR —— UP-DETR
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(a) AP learning curves of VOC

Epochs

(b) AP learning curves of COCO

B 3:7E VOC f1 COCO I, BEF DETR fl UP-DETR [¥] AP(COCO Rk, A SwAV
FIZREI ResNet-50 YIZE 150 1 300 B4R, ZEIZRAFHIAE 100 F1 200 FFARREAK.

FPNZSALLI A 22 25 A6 [26) A1 o BRAS (VR R B4, BTk
TEAPs I IRBE T 7% J5 T AR R-CNN.

K 3b EoR 7 COCO L AP >] #i 2k . UP-DETRYE 150
A1 300 ACIHFE_E#RLT DETR, WCSGHE R, 76 [%
RS R AT, PERe IR E NI B 7RI 21 %
Jii, UP-DETR{3%R%0%% DETRZ] 0.7AP. iX#%H, Rl
fEE R BRI EHE T, il ZRTransformer {598 & &
AE D) (EEE: 2 118K ICOCOBEER ) .

4.3. B—IRERM
o5 B — A RER BN E I R BE i) B AR b
T, — MR B AR AT H bR E G R B A 2R

BRI S o — ORI 2 — /MR BT & AR 7207 1,
BRI BB A LR Se . SR AR TR LA R
4%, UP-DETR HAR W] LA — MR IAE S5 . Rk,
— UAMERE A T LAYE W UP-DETR 0 5 i A 55 Sk Ak
i,

F I8 520140 (R — IR A I e B, FRATTR A R A
THEN DETR #6581 &l b T 347 889, |AAE
VOC 2007train val 1 2012train val (£ 300 18 _E Il %
DETRAIUP-DETR, #AJ57EVOC 2007test 4 b ik 47
flio R 3 B/R T HE G — R RN kw5
DETR #ftk, UP-DETR E##&% I DETR HIMERE



seen class unseen class
i plant | sofa | tv | car | bottle | boat | chair | person | bus | train | horse | bike | dog | bird | mbike | table | AP® | cow | sheep | cat | acro | AP®
SmFC (2] | 32 | 228 | 50 [167| 05 | 81 | 1.2 | 42 | 222|226 | 354 | 142 | 258 [ 117 | 19.7 | 278 | 151 | 68 | 228 | 31.6 | 124 | 133
SiamRPN [23] | 19 [ 157 | 45 |128] 10 | 11 | 61 | 87 | 79 | 69 | 174 | 178|205 | 72 | 185 | 5.1 | 96 | 159 | 157 | 21.7| 35 [ 142
CompNet [+7] | 284 | 415 | 65.0 | 66.4 | 37.1 | 498 | 162 | 317 | 69.7 | 73.1 | 756 | 71.6 | 614 | 523 | 634 [ 398 | 527 [ 753 | 60.0 | 479 | 253 | 521
CoAE([20] | 30.0 | 54.9 | 64.1 | 66.7 | 40.1 | 541 | 147 | 60.9 | 775 [ 783 | 779 | 732 | 80.5 | 708 | 724 | 462 | 60.1 | 839 | 67.1 | 756 | 462 | 68.2
Lieral.[24] | 33.7 | 582 | 675 | 72.7 | 408 | 482 | 20.1 | 554 | 782|790 | 762 | 746 | 813 | 706 | 720 | 488 | 61.1 | 743 | 68.5 | 81.0 | 524 | 69.1
DETR 114 | 422 | 441 [ 634 | 149 | 406 | 206 | 637 | 627 | 715 | 596 | 527 | 60.6 | 536 | 549 | 22.1 | 462 | 62.7 | 552 | 654 | 459 | 573
UP-DETR | 46.7 | 61.2 | 75.7 | BL.5 | 54.8 | 57.0 | 445 | 807 | 745 | 868 | 79.1 | 80.3 | 80.6 | 720 | 709 | 57.8 | 69.0 | 80.9 | 71.0 | 80.4 | 59.9 | 73.1
F 3: AVOC 2007testf I — ALK WL R
Model PQ SQ RQ PQ”’ SQ”1 RQ”1 PQ®t SQ%t RQSt | AP%®Y
PanopticFPN++ [21] | 424 793 51.6 | 492 824 588 323 748 406 | 37.7
UPSNet [42] 425 78.0 525|486 794 59.6 334 759 41.7 | 343
UPSNet-M [42] 430 79.1 528 (489 797 59.7 341 782 423 | 343
DETR [5] 443 80.0 545|492 80.6 60.3 37.0 791 459 | 329
UP-DETR 445 803 547 | 496 80.7 60.7 369 789 458 | 340

R 4: £AHMIF ResNet-50 ET-H] COCOval H#ESE FHIENTHIS R, Carion FANEFLIL TFPN+H,

UPSNet #1 DETR &®. [5]

Case | Frozen CNN Feature Reconstruction | APjq
DETR scratch transformers 74.5
(a) 74.0
(b) v 78.7
(c) v 62.0
(d) v v 78.7

& 5: A% CNN B‘J?ﬁﬁﬂﬁﬁ*ﬂ,\pm TN SRR 2 B Ry
FER., %LWFHEPASCAL VOCLEMAT 150 /8.

) kK.

(+22.8 AP, M) FIEAILHY (+15.8 AP, 38 i
BEAh, FRATIEUEW] T UP-DETR T Fr B 215
% (+7.9 AP M a5) AWK (+4.0 AP I E) — K

A
ML, et — B RAE 7 HATEINZRATHEAE 55 14
Rk

4.4. EWAHE

126 BI[21 ]2 8 3 7 AR A5 35 6 H 1R TO R 0 — A 4
0L B A . %8 5DETR[STH A iz Y 43 E1I
R, AT AR 300 AR AHEE R IAUP-DETR
RIG, TATESEFTE DETR HIEE, IR LA
25 fX.

#4588 T 5% FResNet-50 292 670 7 1 (1)

tb % . 4 F Bt & , UP-DETR 7£ +0.2PQ ,

+0.4PQ" +1.1AP** {1 AE4E TDETR.

AP50
80
70
60
50
40
40 —— DETR
20 (a)
— (b)
10 — {c)
—— (d) UP-DETR
03 20 40 60 80 100 120 140
Epochs

B 4: VOC HI%SIHiL (APSq) BUMARKFRNLEREK
BB AIFIDETR . 150 AR AR TRINT 3R 5 F ARy

4.5. Bbh

W RSz, FRAT#E ImageNet EFRIZE T 15 Kk, £E
5510 BrELR A ST R L 0.1, FATHOE 7 VOC H Ants:
W BRI, FE5S 4.1 1R E X R AIA 150 1.

451 %% CNN AThREER

NT UL UP-DETR F#h THRRAE S A AR LS CNN &
T E B, AT YR ASE 14545 CNN-DETR 45
B, SRS CNNALE SR IR E B AT T A
IRE

% 5 5ok T IURR R B4R APAT AP,y LU 150

REIVOC EHIDETR. 1% 5 A, FEAEFTA IR
A FDETR, M EMIZET (b) F1 (d) #BL
FHARBA , HEERZE, WREHHESEFICNN, Y14
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B 5: /] UP-DETR i#fT# TEFERKNTHE €. F—ITRAERMZFENFBEE. TR
MRS BB BT H R OEMAT . BFIEL EARERRMNERE.

AR (a) A (o) MIRBIELZELL DETR 2.
BAESE T ERIURIIZRE CNN XY Transformer [ Il 25
MERFEREE, A, et —PiEL A0 (BEhLE
1) CNN AHZENZRRT CNN BUED 7] LLHI 554 E R
illo

[l 4 40 7 PURIR [ B 11145 8 R FIDETR Y AP, %%

gk, B4 xRiFR S Rroal. i 4 B (d)
UP-DETR 7E - BA I Zi B BOid ik RRAF B AL B A 1 S 4R
MO B . SR B, BEHLE R T A2 % % bl
B AT, DLSRAS A A0 R . BT & TAL
BN BN, a2 m s 5.
RN L, YR E5CNNRVRE B 2 1R KFR B bt
TR NIZRICNNE R, filln, SwAV. Fik, FATIA
N, HE— 20 FH BE LA 1) BRI R b 2 2] SR o
ADETR Tl i/ll 45 % AN DETRAR B f& — MR A 11 3% 1 7
]

4.6. AJPLAL

N TS U TG AR RE T, BRATATAL T %
TEANT BB e g R AR, Wb
B, BATFZh38Y JLAGE ST Hdis 3 5 5
Flefl ke SRJE, BATKX LN T 1E R E L
Mo ffa, BATHIHAEEERT 0.9 Hd FAESR AT
PRAAE A A o % R T DA ARy JE B 1 — R VA
T B TR FE 2 31 (R B AR VT L

nE s, ZidBEpLE AN TR TI)IZR, UP-DETR
FRIN 5 ) TE A 4 B AN TR AE, B 1
FAME. WFACRE, FAT BEAL A R I AT o T
DA 0 27 I3 R e A A B

5. &

TAVRE T — P AR S5, FROABENLE WAN T
W, PAXTDETRH ) Transformer3H AT T 450 7E T ME
TIIZR T, UP-DETRZE HARKI, — xtEds A1z Ot
o3BT TH W E L TDETR. ATRI, BIELEA 28
ZHHRIICOCO I, UP-DETRIIREIAF LLDETR B 4F .
TG B I ZR AT B B A PR, IIZRATY CNN 3
TR Z5HT 1) Transformer BLTE 4 73 25 Hi 5K o Bl ) TG s
BN SR B 7 3 AR AT b 2 STRAFAE R, T
AN T2 B e A ) & TR . SR, % T UP-DETR
TSR, AT S5 32 Bt A B g FIm 2 2 0 R
W HEAT AN T E AL . FRATT A B — Ff S 1 1 07 9% W] Do
CNN FlTransformer ) Tl 2548 Al 21— A Gt — A s 1) o
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