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利用无人机遥感数据和点喷应用进行玉米地中棉花的AI 驱动计算机视觉检测

摘要：为了有效防治棉田中棉铃象鼻虫（大棉铃象鼻虫）的再次侵扰，有必要解决在玉米（玉米属植物）
和高粱（双色高粱属植物）等轮作作物中检测到志愿棉（棉属植物）植株的问题。目前的做法是在田边进
行人工田间调查，这往往会导致遗漏在玉米和高粱中间生长的志愿棉植株。当这些志愿棉植株达到吐絮期
（5-6片叶）时，它们可能会成为棉铃象鼻虫的寄主。因此，检测、定位并准确地对这些植株进行点喷处理
至关重要。本文重点研究了YOLOv5m在玉米田吐絮期（VT）检测和定位志愿棉植株的应用。我们的研究
结果表明，在大小为1207×923像素的图像上，志愿棉植株的平均精度（mAP）可达79%，交并率（IoU）
为50%，分类准确率为78%。在 NVIDIA Tesla P100 GPU（16GB）上，平均检测推理速度为每秒 47 帧
（FPS），在 NVIDIA Jetson TX2 GPU 上为每秒 0.4 帧，这突显了检测速度对实时应用可行性的相关性和
影响。此外，我们展示了基于开发的计算机视觉（CV）算法，通过模拟定制的无人驾驶飞机系统（UAS）
在点喷应用中的应用。这种基于 UAS 的方法能够在玉米地里近乎实时地检测和缓解杂草类植物，在
NVIDIA Tesla P100 GPU 上，“近乎实时”被定义为每帧约 0.02 秒，在 NVIDIA Jetson TX2 GPU 上为每帧
约 2.5 秒，从而为控制棉铃象鼻虫提供了一种高效的管理解决方案。

关键词：棉铃象鼻虫；志愿棉（VC）；遥感；计算机视觉（CV）；YOLOv5；无人驾驶飞行器系统

（UASs）；点喷

1.引言
棉铃象鼻虫（Anthonomus grandis L.）是一种害虫，自 19 世纪 90 年代从墨西哥迁徙过来

以来，已给美国棉花产业造成了超过 230 亿美元的损失[1]。尽管它已在美国大部分地区被根
除，但它仍然是美国棉花产业关注的问题，尤其是在得克萨斯州。因此，根据日落顾问委员会的
最新报告[2]，得克萨斯州棉铃象鼻虫根除基金会（TBWEF）的活动仍有持续的需求。该基金会
已将该州划分为 16 个根除区，其中格兰德河谷下游（LRGV）仍在积极开展相关工作。



由于其热带气候条件[2]以及靠近墨西哥边境，该地区每年仍是棉铃象鼻虫重新侵扰最
严重的区域。LRGV的脆弱性是由几个因素造成的，其中之一是其亚热带气候，夏季炎
热潮湿，冬季温和凉爽，没有结冰条件，这使得棉花植株全年生长和结果，为棉铃象
鼻虫提供了持续的食物来源。此外，来自墨西哥湾的飓风通常会将棉铃象鼻虫从墨西
哥塔毛利帕斯州带到LRGV[3]。仅在2019年，该基金会就捕获了46,000只棉铃象鼻虫，
表明问题的严重性以及TBWEF持续运作的必要性。如果没有TBWEF的灭虫努力，棉铃
象鼻虫将给德克萨斯州的农民造成每年2亿美元的损失[4]。最近的报告表明，TBWEF
的努力已显著减少了德克萨斯州的棉铃象鼻虫数量[5]。根据 TBWEF 发布的最新周报，
从 2020 年到 2024 年，下里奥格兰德河谷捕获的棉铃象鼻虫的整个季节平均数量减少
了约 99.91%[5]。

棉 花 （Gossypium hirsutum L.） 通常与玉米（Zea mays L.） 和高粱（Sorghum
bicolor L.）等作物轮种。在像LRGV这样的气候地区，棉花种子可以全年存活，因此，
在前一年收获期间可能掉落的棉花种子可以在今年的玉米和高粱植株中生长[3,6,7]。这
种植物被称为自生棉花（VC）植物，本质上它们是杂草，可以在玉米、高粱、大豆和
小麦等谷类作物的田地里出现。在州生产区域内，必须清除各种作物中的自生棉花，
主要有两个原因：竞争导致的产量损失和棉铃象鼻虫防治的挑战。自生棉花植物与主
要作物竞争，降低了产量，农民通常希望使用除草剂控制到80-90%。在南德克萨斯州
和德克萨斯州东部，德克萨斯棉铃象鼻虫根除计划（TBWEP）正在进行中，自生棉花
植物的存在显著增加了棉铃象鼻虫防治的复杂性和成本，因为棉铃象鼻虫以棉花植物
为宿主。因此，德克萨斯州农业部对隔离区内可种植的非商业性棉花植株（6-8片叶子
或更大）实行零容忍政策，以防止害虫侵袭。为了遵守这些规定并保护作物产量，农
民必须通过及时和适当的除草剂应用来完全控制自生棉花。

为了最小化棉铃象鼻虫再次侵扰的可能性，TBWEF使用信息素陷阱来检测棉铃象
鼻虫，并使用农药将其消灭。作为 LRGV 地区棉铃象鼻虫缓解工作的一部分，每周都
会检查有轮作作物的田地，看田边是否有 VC 植物。当检测到 VC 植物时，信息素陷阱
的数量会增加。除了检查 VC植物的存在外，还会检查信息素陷阱中是否有棉铃象鼻虫。
如果在田边至少发现一只， 那么整个田地都会喷洒农药， 通常是马拉硫磷
（C10H19O6PS2）超低容量（FYFANON®ULVAG），用量在 0.56至 1.12千克/公顷
之间[8]。由于玉米和高粱田中间生长的 VC 植物未被检测到，因此无法单独喷洒。对
整个田地进行喷洒会导致管理成本增加、环境问题以及许多有益昆虫的破坏。

如果能在玉米和高粱田间生长的薇甘菊植物被检测到并精确定位，从而能够部署具
备点喷能力的无人驾驶飞机系统（UAS），就可以避免均匀喷雾。在薇甘菊植物到达
小粒状阶段之前进行检测，并精确地用除草剂进行喷雾处理，可以消除这些植物，并
最大限度地减少使用马拉硫磷的需求。然而，由于对除草剂的耐受性或检测不准确，一
些薇甘菊植物可能会存活下来，在这种情况下，在季节后期可能需要应用马拉硫磷。为
了在生长季的早期或晚期检测薇甘菊植物，可以使用由UAS收集的图像以及使用最先
进的卷积神经网络（CNN）架构（如Mask R-CNN[9]、YOLOv3[3,10,11]、YOLOv5 [12]
等）的计算机视觉（CV）算法进行遥感检测。自2021年发布以来，YOLOv5在CV应用
中变得流行起来，并被用于检测



各种物体，如苹果[13]、口罩[14]、安全帽[15]等。由于与其他传统物体检测算法相比，
YOLOv5具有更高的检测精度和更快的推理速度，因此在本研究中，YOLOv5被选为最可
行的模型，用于近实时检测。最初，YOLOv5发布了四种不同的变体：YOLOv5s、
YOLOv5m、YOLOv5l和YOLOv5x。然而，基于我们之前的研究[16]，YOLOv5m被选为
理想的变体。

除了检测到VC植物外，还需要检测到植物的地理坐标，以便进行精确的喷雾应用。
因此，本研究使用了带有地理标签的无人机图像。高质量的RGB（红色、绿色、蓝色）
相机通常用于YOLOv3和YOLOv5的物体检测[13,14,17]。在大多数情况下，未进行辐射校
正。未进行辐射校正的遥感图像容易受到各种环境条件的影响，包括光照、大气光散射、
传感器噪声等[18]。未进行辐射校正的图像的数字编号（DN）无法代表实际的地表反射
率[19-21]。因此，本研究进行了辐射校正。

YOLO 系列的目标检测算法会在图像中感兴趣的目标周围生成边界框（BBs）。这些
边界框的位置是基于它们与图像左上角像素的距离[10,22,23]。基于边界框的坐标，可以
确定每个边界框的中心坐标。像素坐标对于具有点喷能力的无人机系统的路径规划并无
用处，因此有必要将像素坐标转换为 GPS 坐标，以便它们能够用于对检测到的杂草类植
物进行点喷的路径规划。

无人机系统的飞行时间受电池容量的限制，因此最优飞行路径对于高效喷洒薇甘菊
植物是必要的。最优路径规划可以基于旅行商问题（TSP）来进行，其目标是确定无人机
系统对每个检测到的薇甘菊植物进行点喷的最短路径，然后返回起点[24,25]。针对此问
题，已经测试了不同的算法，其中一些包括 Moon 等人[26]和 Shivgan 和 Dong[25]使用的
遗传算法，Dorigo 等人[27]使用的蚁群优化（ACO）等。在本研究中，由于蚁群优化在
实现上简单、可行，并且能更快地生成高质量的解决方案[27]，因此采用了蚁群优化。
通过使用 DroneKit-Software（3.3.0）In The Loop（SITL）（3D Robotics，伯克利，CA，
美国）、MAVProxy[28]和 Mission Planner（Ardupilot 开发团队和社区）对确定的最优飞
行路径进行了测试。DroneKit-SITL提供了一个应用程序编程接口（API），用于在无人机
的计算机上运行基于Python的应用程序，而MAVProxy和Mission Planner是地面控制站
（GCS）软件程序，用于控制和模拟无人机的应用[29]。GCS和无人机之间的通信是通过

一种名为MAVLINK的二进制串行遥测协议实现的[30]。

本研究的总体目标是开发一种计算机视觉（CV）算法，用于在玉米田中检测出草害
植物，并利用检测到的位置进行最优的定点喷雾应用。四个具体目标是：（i）使用
YOLOv5m开发一种计算机视觉（CV）算法，用于在玉米田中检测出草害植物，使用辐
射（反射率校准）和伽柏校正的相对低分辨率（1.2兆像素）多光谱航拍图像；（ii）将
检测到的草害植物的基于像素的边界框坐标转换为地理坐标；（iii）使用检测到的草害
植物
的地理坐标，使用蚁群算法（ACO）生成最优飞行路径；（iv）基于生成的最优飞行路径，
使用DroneKit-SITL和MAVProxy和Mission Planner GCS软件模拟定点喷雾无人机。

2.材料与方法
2.1.实验场地

本研究是在德克萨斯州大学农业生命研究中心位于德克萨斯州大学城附近的一个玉
米地（图1；西经96◦25‘45.9‘‘，北纬30◦32’07.4’’）进行的，该玉米地面积约
为5.9公顷（14.6英亩）。实验区的大部分土壤为韦斯伍德粉质黏土壤土。



图 1 。实验场地位于得克萨斯州伯利森县大学城附近的得克萨斯 A&M 大学农场（西经 96◦25‘45.9‘‘，北纬 30◦
32’07.4’’），在那里，棉花植株被种植在玉米地的中间，以模拟存在志愿棉花植株的情况。

2.2.图像数据采集
一台五波段（蓝色、绿色、红色、近红外、红边）多光谱相机——Red-Edge-MX（由

AgEagle Aerial Systems Inc.提供，以MicaSense名义运营，位于堪萨斯州威奇托；图2）——
被安装在一个定制的无人机系统上，用于在玉米植株达到吐丝期（VT）时收集带有棉花的
玉米田的航拍图像（图3）。选择这款相机而不是传统的RGB相机的原因是，其图像带有地
理标签，并且可以使用制造商提供的开源代码进行辐射校正等高级图像处理技术；此外，
它还提供了在需要时使用其他波段（如近红外和红边）的灵活性。每个波段的中心波长和
带宽如表1所示。在这个玉米植株的生长阶段获取图像是因为我们想要测试最坏的情况，即
玉米冠层相对比VC植物更大更高。这在其他研究中也有体现，其中玉米田的最低检测精度
出现在它们达到VT生长阶段时[7]。无人机系统（Hylio AG-110； ）美国德克萨斯州里士满
的Hylio公司最初是为广播喷雾应用而设计的。数据于2021年5月14日中午11点至下午2点
（中央夏令时）收集，地点位于海拔近4.6米（15英尺）处，使用自动曝光相机设置。这导
致地面采样距离（GSD）约为0.34厘米/像素。选择这个高度有两个主要原因：一是提高图
像分辨率和GSD，二是使从该高度进行高效的点喷应用时，不会导致喷雾液滴的过度扩散。
由于定制的无人机系统不是为航空测量而设计的，因此没有可用的软件界面来根据重叠设
置捕获图像。因此，图像是通过自动曝光相机设置捕获的。



在基于定时器的设置下，每秒钟捕获一张图像。由于缺乏重叠设置以及喷头无人机系
统（通常，可喷雾无人机系统比测量无人机系统振动更剧烈）的设计方面引起的振动，
这导致了许多未使用的和失真的图像。该无人机的有效载荷容量为 10 千克/升。该无

人机以 2 米/秒的速度飞行。

图 2 。一种定制的喷药无人机系统（将广播喷药机改装为点喷机），配备 RedEdge-MX 多光谱相机用于获取航拍图
像，以及 NVIDIA Jetson TX2 计算平台[7]。

图 3. （A）定制的喷点无人机系统在实验玉米地（包含一些为模拟志愿棉（VC）植株而种植的棉花植株）上空飞行，
捕获五个波段的多光谱图像；（B）RGB（红、绿、蓝）合成图像显示实验区的一部分，可以看到处于营养生长阶
段（VT）的玉米和一些模拟为 VC 植株的棉花植株。

表 1 。MicaSense RedEdge-MX 相机每个频谱波段中心波长和全宽半高（FWHM）带宽。

频谱波段 中心波长（纳米） 全宽半高带宽（纳米）

蓝色 475 20
绿色 560 20
红色 668 10
近红外 840 40
红边 717 10



一种机载计算平台，即由帕斯卡图形处理单元（GPU）组成的 Jetson TX2（英伟
达公司，美国圣克拉拉）开发板，被安装在定制的无人机上，用于在玉米田中近乎实
时地检测杂草类植物（图2）。帕斯卡GPU是一种低成本、快速且广泛使用的嵌入式
人工智能计算设备。它由256个英伟达统一计算设备架构（CUDA；英伟达，美国圣克
拉拉）核心组成，具有8GB的内存和32GB的存储空间[32]。

2.3.制造商推荐的校正措施
通过 RedEdge-MX 相机采集的各个波段图像是根据制造商的建议[33]进行校正的，

使用的是在数据采集当天飞行前不久拍摄的 RP 04 型反射率面板（图 4）的图像。

图 4. 飞行当天用 RedEdge-MX 相机蓝色波段传感器拍摄的 RP 04 型反射率面板图像。

根据制造商的工厂校准（其中绝对反射率值沿着从 400 纳米到 850 纳米波长绘
制），在研究中使用的面板对应的蓝色、绿色、红色、近红外和红边的反射率值分别
为 0.60、0.61、0.61、0.60 和 0.56。按照制造商的流程，从反射率面板图像中提取兰
伯特面板的一块区域，并将其辐照度值转换为反射率值的尺度，然后将其应用于整个
图像以将其转换为反射率图像。辐射校正和伽马校正的源代码均来自 MicaSense 的
GitHub（GitHub, Inc., San Francisco， CA， USA）存储库[33]。根据所使用的面板的
反射率值对原始源代码进行了修改，并生成与每个捕获图像的场数据收集对齐的 RGB
图像，如图 3 所示。生成 RGB 图像是因为 YOLOv5 网络架构接受具有三个通道（通
常是 RGB 图像）的输入图像。在 Spyder 集成开发环境（IDE）5.2.2 版中使用了
Python 3.8.12 版（Python 软件基金会，美国特拉华州威尔明顿）。整个过程包括通过
增益和曝光设置对图像进行归一化处理，然后进行转换



将它们转换为辐照度，然后是反射率。使用增益和曝光设置来标准化原始图像数据，校
正曝光时间和传感器敏感度的差异，并允许准确转换为辐照度值。通过曝光和增益设置
对图像进行标准化对于将原始图像转换为辐照度至关重要。曝光时间（表示相机传感器
暴露于光线的持续时间）和增益（源自ISO设置）从图像元数据中获取。原始图像经过
校正，以考虑暗像素偏移、渐晕效应和行梯度不准确性。在此之后，使用曝光时间和增
益对校正后的图像进行标准化，确保不同图像的一致性。然后，通过将图像数据与增益-
曝光乘积进行缩放，并应用针对图像位深调整的辐射定标系数，将其转换为辐照度单位
（W/m2/nm/sr）。这个过程确保了可靠反射率映射所必需的准确和可比的辐照度值。在这
之后，研究中应用了锐化掩码（一种图像锐化技术）作为增强技术来提高视觉清晰度，然
后应用伽柏校正来使增强后的图像看起来更明亮，视觉上更接近我们的眼睛所看到的
[33]。对于这些，使用了GitHub源代码中存在的原始值。锐化掩码技术使用线性滤波器 将
高通滤波输入图像的一部分添加到原始图像中，通过过滤噪声来帮助锐化原始图像
[34]。同样，伽柏校正是一种图像增强技术，用于最小化成像传感器的非线性影响，从而
使图像看起来更明亮，对比度增强，视觉上更接近[35-37]。

2.4. YOLOv5
自2020年6月发布以来，YOLOv5已成为计算机视觉应用中流行的目标检测算法。

YOLOv5最初以四种不同的变体YOLOv5s、YOLOv5m、YOLOv5l和YOLOv5x发布，其
中下标表示网络深度和使用的参数数量。在这里，s、m、l和x分别表示YOLOv5网络的四
个变体：小型、中型、大型和超大型。YOLOv5网络带有在Common Objects in Context
（COCO）数据集上训练的预训练权重，该数据集包含80个不同的类别，因此YOLOv5
被预训练以检测80个不同的类别。在本研究中，网络被定制以检测单个类别“vc”，用
于VC植物。YOLOv5网络的架构包括三个主要组件：骨干网络、颈部/特征聚合网络
（PANet）和头部/输出网络（图5）。骨干网络是一个卷积神经网络（CNN），负责聚
合细粒度的图像。颈部由特征聚合层组成，这些层将特征组合起来构建特征金字塔网络。
这些生成的特征图随后被传递到头部或输出网络。输出网络处理模型的最终检测阶段。它
将锚点框应用于从上一层获得的特征图，并生成一个向量，其中包含目标对象的类别概
率、对象得分以及包围目标对象的边界框的位置[40]。

2.5.图像数据准备
在经过辐射校正和伽马校正的RGB图像中，只选择那些至少包含一棵背景为玉米的

VC植物的图像，然后使用Python的Augmenter库进行图像增强[41]。为此，使用了rotate、

flip_left_right、zoom_random和flip_top_bottom操作，概率值分别为0.80、0.40、0.60和0.
80。这些值的选取是为了确保每次图像通过增强管道时，80%的时间应用rotate操作；40%
的时间应用flip_left_right操作；60%的时间应用zoom_random操作；80%的时间应用flip_
top_bottom操作。通过这种方式，我们从总共34幅原始图像（至少包含一棵VC植物）中生
成了总共521幅RGB图像，这些图像经过辐射校正和伽马校正，并且每幅图像的大小 都为
原始大小，即1207×923像素。其中，417幅图像（80%）用于训练，77幅（15%）用于



用于验证，27 例（5%）用于测试。数据分割的比例是任意选择的。

图 5. YOLOv5 网络架构的总体概述。

2.6. YOLOv5训练
YOLOv5m 的源代码是从 Ultralytics 公司的 GitHub 存储库中获得的[12]。使用

PyTorch 框架（Facebook AI Research Lab，Melno Park，CA，USA），torch 版本为 1.
10.0， 计算统一设备架构（CUDA） 版本为 11.1.0（NVIDIA，Santa Clara，CA，
USA），在特斯拉 P100-PCIE-16GB（NVIDIA，Santa Clara，CA，USA）GPU 上使用
谷歌 Colab（Google LLC，Melno Park，CA，USA）AI 平台对 YOLOv5m 模型进行训
练。该模型使用原始超参数值进行训练，初始学习率为 0.01，最终学习率为 0.1，动量
为 0.937，权重衰减为 0.0005，交并比（IoU）阈值为 0.50，总共迭代 621 次。这实质
上意味着 YOLOv5m 在 621 次迭代中达到了收敛。

2.7.边界框坐标转换
该过程的第一步是从 RedEdge-MX 相机的地理标记图像中提取左上角坐标，这些

图像在辐射校正、伽马校正、图像增强和 RGB 波段对齐的过程中，通过修改从
MicaSense 的 GitHub 存储库获得的原始 Python 脚本[33]。每个地理标记图像的提取的
GPS 坐标被存储在一个逗号分隔变量（CSV）文件中。YOLOv5 detect.py Python脚本

被修改以提取每个检测到的边界框的中心坐标，这些坐标被存储在一个单独的 CSV 文
件中。还开发了另一个 Python 脚本，用于同时利用这两个 CSV 文件，然后将检测到
的 VC 植物的逐像素边界框转换为 GPS 坐标。在该 Python 脚本中，首先将 GSD 转换
为米/像素格式，将小数坐标转换为通用横轴墨卡托（UTM）格式，从中提取北向和东
向值，然后在转换过程中使用 UTM 区域 14 将基于像素的中心坐标转换为基于 UTM
的 GPS 坐标[42]。

该转换过程中潜在的误差来源包括图像初始地理标记的不准确性、GSD 的变化
以及 UTM 转换的精度。检测到的边界框坐标的准确性也受到性能的影响。



YOLOv5 模型在物体检测中可能存在误差幅度。此外，图像处理步骤中的任何微小错
位或失真都可能传播到最终的 GPS 坐标中。至关重要的是要考虑到这些因素，并应用
适当的误差校正和验证步骤，以确保从逐像素的边界框推导出的 GPS 坐标的可靠性。

2.8.蚁群算法的最优飞行路径
蚁群算法是解决诸如车辆路径问题、开放式车间调度问题和顺序排序问题等众多问题

的最先进算法[27]。它基于这样一个事实：当蚂蚁沿着从蚁群到食物源的路径移动时，它
们会留下信息素，信息素会随着时间的推移而蒸发。这意味着沿着较长路径行走的蚂蚁留
下的信息素沉积较少，但沿着最短路径的信息素强度要高得多。在我们的案例应用中，
VC 工厂位置是人工蚂蚁会通过尽可能短的路径找到的食物源。在过去的许多案例中，蚁
群算法已被证明是广泛接受的确定无人机最优飞行路径的算法[43,44]。实现蚁群算法的源
代码取自 fabien-brulport 的 GitHub 库[45]。原始源代码经过了修改，以生成一个 CSV 文
件，其中包含按照蚁群算法生成的最优路径的节点顺序的 GPS 坐标（纬度、经度）作为
输出。在我们的研究中，我们将信息素权重、启发权重和蒸发率的值分别设定为2.01、1
和0.5，以实现不同组合值的尝试后最短距离。同样，代理数量（即人工蚂蚁的数量，即
无人机的数量）和迭代次数的值分别为1和100。数学上，在任何给定的时间t，张等人[44]
解释说，蚂蚁k选择从i到j路径的概率由以下公式给出：

在这里，α和β分别是信息素和启发式权重。ηij（t）和τij（t）分别是点i和点j之间的信
息素可见性和数量。S ⊂ allowedk 是蚂蚁可以选择的所有可能路径点的一个集合。信
息素的量决定了可见性，进而决定了选择路径的概率。因此，信息素的量越高，点i和
点j之间特定路径的可见性就越高，选择该路径的概率也就越大。

2.9.点喷无人机系统仿真
一旦地理坐标以与通过蚁群优化算法获得的节点相对应的最优顺序保存下来，就使

用 DroneKit-SITL（位于美国加利福尼亚州伯克利市的 3D Robotics 公司）Python 软件
包，通过 Python 脚本模拟无人机的飞行路径，并在两个地面控制站（GCS）上进行监
控：Mission Planner 版本 1.3.76 [46] 和 MAVProxy 版本 1.8.45 [28]。使用 MAVLink [30,
47] 协议在两个 GCS 和 DroneKit-SITL 之间进行通信。这种通信是通过使用传输控制协
议（TCP）作为主端口，然后将输出端口转发到三个用户数据报协议（UDP）端口来实
现的。实现整个过程的步骤在下面的算法 1 中有所展示。

一个 Python 脚本被用于读取一个 CSV 文件，该文件按顺序包含了由蚁群算法生成
的所有节点的 GPS 坐标，这些坐标对应于检测到的需要点喷的 VC 植物的位置。在无
人机系统模拟成功执行后，我们还能够在由 Hylio 开发的 AgroSol 2.105.0 版地面控制
站上传带有最优飞行路径的 CSV 文件。AgroSol 软件提供了控制定制点喷无人机的接
口。图 6 中的流程图展示了从数据收集到点喷无人机模拟的整个工作流程。



图 6. 一个流程图，展示了完整的工作流程，代表了本研究中使用的每个步骤。



3.结果
3.1.使用 YOLOv5m 的 CV 算法在辐射校正后的航拍图像上检测玉米地
中的杂草类植物

图7展示了在训练和验证数据集上的框损失（IoU损失）和目标性损失的图形。
在第600次迭代之前，两种损失都已收敛，之后没有看到进一步的改善。在训练数据
集上，第476次迭代时框损失的最低值为0.028，而目标性损失的最低值为0.009，出
现在第613次迭代。在验证数据集上，第394次迭代时目标性损失的最低值为0.0094，
而框损失的最低值为0.0296，出现在第370次迭代。在图8中，可以看到不同性能指标
的图形。在第320次迭代时，精度达到最大值约0.98，而在第525次迭代时，召回率达
到最大值0.77。其中最重要的是mAP@0.50，其最大值为0.81，出现在第613次迭代。
mAP@0.50值为0.81，表明模型在考虑IoU阈值为50%的检测时表现良好，这意味着预
测的边界框与真实框重叠至少50%。这个相对较高的值表明，模型在这些条件下能够
准确检测和定位志愿棉（VC）植物。在迭代次数为521时，mAP@0.50:0.95的最大值
被获得，其值为0.33。mAP@0.50:0.95值为0.33，揭示了模型在不同IoU阈值（从50%到
95%）下的性能表现更加细致。这个较低的值表明，虽然模型在识别和定位50%重叠的
物体方面很有效，但随着正确检测所需的重叠变得更加困难，其性能会下降。这表明
在实现精确定位方面存在潜在挑战，特别是在区分VC植物与背景和其他物体
（如玉米植物、杂草和土壤）方面。精度-召回率曲线（PRC）显示总体准确率接近
79%，F1分数的最大值在近40%的置信水平下为0.76（图9A、B）。图10中的混淆矩
阵显示，YOLOv5m经过充分训练，能够以78%的准确率对VC植物进行分类，但由于
玉米植物、杂草、土壤等背景类别的存在，损失率为22%。为了减少这些误分类，可
以实施一些策略。首先，增加训练数据集的多样性和大小可以帮助模型更好地区分
VC植物和其他类似物体。这可以通过在各种光照条件和生长阶段收集更多标注的图
像来实现。其次，数据增强技术如旋转、缩放和颜色调整可以提高模型对田间环境
变化的稳健性。

图10展示了经过训练的YOLOv5m模型的一些检测结果，该模型在NVIDIA Tesla
P100 GPU-16GB上的平均推理速度为47帧每秒（FPS）。该模型后来被部署在安装在
定制无人机系统（图2）上的NVIDIA Jetson TX2 GPU上，对于大小为640×640像素
的图像，调整后的平均推理速度为2.535秒（约0.4 FPS）（图11）。YOLOv5m模型
在NVIDIA Jetson TX2 GPU上的推理速度是评估实时应用可行性的关键因素。实时处
理通常需要至少30 FPS的速度，以确保在动态环境中的平滑和响应性能。观察到的0.
4 FPS的速度表明存在显著的延迟，使其不适合需要立即检测和响应的场景，例如实
时监测和干预农业领域。这种低推理速度可以归因于多个原因。其中一个可能的原
因是Jetson TX2板上的GPU硬件设置，无法充分利用其最大计算能力。

mailto:其中最重要的是mAP@0.50


图 7. 在 YOLOv5m 对训练和验证数据集进行训练的过程中所获得的不同类型的损失。

图 8. YOLOv5m 训练过程中获得的不同类型的性能度量。



图 9. （A）精确率 - 召回率图，（B）F1 分数与置信度分数图，以及（C）训练 YOLOv5m 后得到的混淆矩阵。

图 10. 由训练好的 YOLOv5m 模型在玉米地中间检测到的杂草类植物，位于红色边界框（BBs）内。与每个边界框相
关的值显示了模型对于该边界框包含感兴趣对象（即杂草类植物）的确定性。



图 11. 通过将 YOLOv5m 部署在安装在定制的具备点喷功能的无人机上的 NVIDIA Jetson TX2 上，对玉米地中的杂
草类植物进行检测。

3.2.蚁群算法用于确定点喷应用的最优飞行路径
在实验区中，选择了十个随机的棉花植株位置，其相应的GPS坐标可以在表2的

左侧看到。选择这十个随机位置是为了模拟真实的田间条件，同时确保无人机系统
（UAS）在单次飞行中能够进行点喷的可行性。这些位置是随机选择的，以覆盖实
验区的不同区域，确保无人机系统能够一次飞行有效地管理整个区域。选择这些位
置的标准包括确保所有选择的位置都是可访问的，并且能够在无人机的操作限制
（如飞行时间和电池寿命）内覆盖。每个位置都包含多个棉花植株（因为每个位置
都种植了多个棉花种子）；然而，只考虑一个植株的GPS位置。这代表了模拟现实
世界的情况，即棉花植株通常成组生长，通过考虑每组中一个植株的位置，就可以
对包含该组棉花植株的整个区域进行喷雾。

表 2 。实验地块中十个 VC 植物随机选取位置的全球定位系统坐标（左）以及应用蚁群算法后的有序坐标/节点
（右）。

风险投资 纬度 经度 节点 纬度 经度

1. 30.5343 −96.4312 1. 30.53687 −96.4284

2. 30.53431 −96.4301 2. 30.5359 −96.4283

3. 30.53492 −96.4303 3. 30.53321 −96.4298

4. 30.53386 −96.4299 4. 30.53386 −96.4299

5. 30.53531 −96.4289 5. 30.53431 −96.4301

6. 30.53484 −96.4299 6. 30.53492 −96.4303

7. 30.53687 −96.4284
蚁群算法 7. 30.5343 −96.4312

8. 30.53537 −96.4289 8. 30.53484 −96.4299

9. 30.5359 −96.4283 9. 30.53537 −96.4289

10. 30.53321 −96.4298 10. 30.53531 −96.4289

11. 30.53687 −96.4284



在这种情况下，第一个位置也被视为点喷无人机开始和结束飞行的起始位置。
表2的右侧显示了按照蚁群算法确定的顺序生成的节点。节点1和节点11表示同一
个位置，即飞行开始和结束的位置。点喷应用生成的最优路径可以在基于网页的输
出（图12）上看到，该输出由Streamlit Python包（Streamlit Inc.，旧金山，CA，
USA）生成。底部图表显示x轴上的迭代次数和y轴上的最优覆盖距离（以千米为单
位）。点喷无人机沿着生成的路径覆盖的总距离为674.17米（0.67千米/0.42米）。

图 12 。通过蚁群算法生成的最优飞行路径，并通过 Streamlit Python 包在网页上显示输出。

3.3.基于蚁群算法生成的最优飞行路径，在 Mavproxy 和 Mission Planner
上进行点喷无人机系统仿真

一旦通过蚁群算法获得最佳飞行路径（表 2），就使用 DroneKit-SITL 按照图
13A-C 所示在地面控制站 - MAVProxy和任务规划器上关于点喷 UAS模拟的部分
中描述的步骤来模拟点喷 UAS。



图 13. 在 MAVProxy（A、B）和 Mission Planner（C）地面控制站上的点喷式无人机系统模拟。图像 A 展示了模拟的
无人机从节点 1 飞往节点 2，图像 B 展示了它从节点 4 飞往节点 5，图像 C 展示了模拟的无人机从节点 8 飞往节点 9。

3.4.农业用太阳能无人机上的点喷任务
AgroSol（美国德克萨斯州里士满的Hylio公司）的GCS软件允许用户上传由蚁群算

法生成的包含节点GPS坐标的CSV文件，然后，可以使用不同的设置进行点喷应用
（图14）。在本研究中，一旦上传了包含点位的CSV文件，AgroSol就会生成一个点组，
如图14左侧所示。然后，我们可以填写不同的参数值，如喷雾高度、喷雾量等。喷雾
任务可以上传到无人机飞行控制器，然后，无人机可以前往每个点位，并在每个点位上
精确点喷。



图 14. 上传包含通过蚁群算法生成的节点的 CSV 文件后，由 Agrosol 软件（2.87.5 版）生成的点喷节点。

4.讨论
4.1.使用 YOLOv5m进行 VC检测

张等人[48]在开发基于光谱反射特性区分棉花植株与其他作物的方法时，提到了多
光谱遥感图像在检测其他作物中棉花的潜在应用。同样，在我们的前一项研究[49]中，
我们能够证明基于无人机系统的多光谱遥感图像可以用来检测生长在玉米地里的棉株。
在韦斯特布鲁克等人[50]的另一项研究中，作者能够利用航拍遥感RGB图像检测到早期
生长阶段的棉株。本文所报道的研究借鉴了之前所有研究的动机和建议，因为它使用了
由无人机系统收集的多光谱遥感图像。然而，不同之处在于使用了卷积神经网络算法，
而不是传统的图像处理技术，如判别分析、主成分分析（PCA）、最大似然分类、线性
光谱分解等。在张等人[48]进行的研究中，他们能够以100%的准确率区分棉花植株与
其他作物，如玉米、大豆和高粱。然而，该方法使用手持式光谱辐射计或安装在拖拉机
上的光谱辐射计，这些设备非常靠近作物冠层。这意味着他们的方法受到两个主要因素
的限制：第一个因素是它不能应用于更大的农田区域；第二个因素是它是一个耗时的过
程，不适合于对VC植物的近实时检测。我们之前的研究[49]使用了遥感多光谱图像和
一些经典的机器学习技术，使VC检测过程半自动化；然而，它无法产生超过70%的分类
准确率。

在本研究中，我们能够利用YOLOv5m开发一种CV算法，通过多光谱遥感图像检测在
吐丝期（VT）生长阶段的玉米田中生长的VC植物（在穗原基生长阶段之前）。在另一项
研究中[3]，我们能够利用未校准的RGB图像在早期玉米田（V3营养生长阶段）中检测到
超过90%的VC植物。我们使用了YOLOv3，其分类准确率比之前的方法高出近
29%[49]，但由于图像未进行辐射校正，训练模型对光照条件和环境因素的鲁棒性较差。
此外，与本文所报道的研究相比，VC植物与玉米植物之间的相对高度差异较小。
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在我们当前和最新的方法中，我们能够基于YOLOv5m开发一种CV算法，该算法
对光照条件和环境因素更加稳健，因为它是在经过辐射校正的图像上进行训练的[51]。
通过在经过辐射校正的图像上训练YOLOv5m模型，我们能够生成一个更可靠的模型，
因为它是在更准确的数据上进行训练的[21]。使用当前的方法，我们能够以比之前的方
法高出11.43%的准确率对VC植物进行分类，如图10所示。值得注意的是，在玉米田
中，当植物处于VT阶段时，与之前研究中报道的V3阶段相比，获得了类似的检测准确
率[3]。YOLOv5相对于其先驱和其他检测模型（如Faster R-CNN、EfficientDet和 SSD
（单发多框检测器））具有几个优势，这些模型各有其优点和缺点。Faster R- CNN
以其高精度而闻名，但它往往以牺牲推理速度变慢为代价，使其不太适合实时应用。
EfficientDet 能有效地平衡准确性和速度，但它需要大量的超参数调整以及更大的计算
资源。与 YOLOv5 相比，SSD 速度较快，但总体上在准确性方面有所滞后。

本研究的总体目标是加快德克萨斯州棉铃象鼻虫根除计划（TBWEP）的管理，
同时降低化学成本。因此，除了开发一种近实时检测VC植物的系统外，还需要开发
一种能将假阴性（即最大召回率）最小化的检测算法。这样，我们就可以最小化在玉
米地中间遗漏可能成为棉铃象鼻虫宿主的VC植物的可能性。换句话说，对于我们的
使用案例场景，我们的算法可以容忍假阳性，但不能容忍假阴性，因为棉铃象鼻虫造
成的损害远远大于因假阳性而向一些不期望的位置喷洒所产生的额外成本。因此，可
以使用第525次迭代获得的模型（图8）。然而，如果需要高精度（如在节省化学成本
的情况下），则可以使用在第322次迭代训练的模型，其精度高达98%（图8）。为了
定量分析精度和召回率之间的权衡，我们研究了YOLOv5m模型在不同迭代次数下的
性能。在第525次迭代中，该模型的最大召回率为0.77，这对于最小化遗漏任何VC植
物的可能性至关重要。高召回率表明模型能够检测到大多数VC植物，从而防止潜在
的棉铃象鼻虫侵害。然而，这以降低精度为代价，即存在更多的假阳性。在我们的情
境中，这种权衡是可以接受的，因为我们的主要目标是确保不遗漏任何VC植物。模
型的整体性能由mAP@50表示，在第613次迭代中，其最大值为81%（图8）。通过调
整Yan等人[40]提到的置信阈值，可以提高训练模型的性能。此外，我们还通过使用
图像增强技术从有限数量的数据集中生成了521张图像，即34张图像。这样，本研究
中报告的训练模型可以被视为相对更具泛化能力[52]。虽然图像增强技术可以提高训
练集的多样性，但它们可能无法完全捕捉到现实场景中的变化，比如由于不同的光照
条件、植物生长阶段和环境背景所导致的变化。为了提高模型的泛化能力，可以实施
几种策略，其中之一是通过从各种田间条件和生长阶段收集更多标注的图像来增加训
练数据集的大小和多样性，这有助于模型学习更稳健和可泛化的特征。

4.2.蚁群算法在最佳飞行路径和点喷中的应用
无人机飞行参数，如飞行速度、飞行高度、偏航角等，被假设为固定值，并基于

对信息素和启发式参数的等权重分配生成最优路径，如图12所示。这些假设与马等人
[53]所做的假设类似。在我们的实现中，唯一使用的约束是两个GPS位置之间的距离。
然而，在其他研究中，参数如
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偏航角度被用作一些约束条件[44]。蚁群算法本质上是随机的，基于随机生成的变量生成足够好
的解决方案，但没有全局最优解[54]。因此，图14所示的最优路径可能不是全局最优解，而只是
基于我们研究中使用的随机生成变量的一个解决方案。在本研究中，蚁群算法使用的参数值可
能不是最佳值，但经过合理组合的测试。从过去的研究中发现，蚁群算法对蒸发率高度敏感，
蒸发率被认为相当于学习率；因此，选择正确的参数值至关重要[55,56]。Ojha等人[55]发现，当
蒸发率超过0.5时，蚁群算法的性能会下降。因此，我们选择在研究中使用0.5作为蒸发率（图
12）。从10个VC植物位置共生成了11个节点，如表2-左和表2-右所示。节点1和节点11表示相同
的地点，无人机从这里开始并结束其穿越最优路径的旅程（图12-14）。

5.结论与未来工作
5.1.结论

本文介绍了我们在基于YOLOV5m的CV算法在玉米田间苗期检测玉米植株的成功应用。我
们的方法与以往的方法相比，分类和检测精度有所提高。此外，我们还证明了低分辨率成像传感
器，结合辐射和伽马校正等预处理算法，可以有效地检测玉米植株，同时对光照和环境条件的变
化具有较强的稳健性。

此外，我们通过将训练好的 YOLOV5m模型部署到安装在喷雾无人机上的计算平台上，展
示了其在近实时检测方面的实用性。这种实现方式能够在全尺寸图像（1207×923 像素）中检
测到 VC植物，在 NVIDIA Jetson TX2开发板的 Pascal GPU上，调整后的平均推理速度约为 0.4
帧每秒。

此外，我们成功地将检测到的玉米植株的像素级边界框中心坐标转换为GPS坐标。这使得我
们能够使用蚁群算法生成最优飞行路径，以模拟点喷应用。总的来说，我们的研究已经开发出
一种计算机视觉算法，能够对玉米田中的玉米植株进行近实时检测，并利用定制的喷药无人机
进行点喷应用。通过这项工作，我们创建了一个系统，有可能以更低的成本加快田间杂草防治
工作。

5.2.局限性与未来工作
在我们的研究中遇到了几个限制。首先，我们只有34张原始图像包含VC植物。为了解决这

个问题，我们对整个原始图像集应用了图像增强技术。尽管这种方法可能导致数据泄露，但索
尔·巴雷托[57]已经证明，在数据有限的情况下，它仍然可以有效地使用。另一个限制是在我们
的研究中观察到的，即在Jetson TX2平台上部署训练好的YOLOv5m模型时，VC检测的推理速度
很慢。通过适当配置硬件并部署YOLOv5的轻量级版本以实现实时应用，可以缓解这一限制。最
后，我们的研究中没有在田间条件下验证点喷应用的模拟结果。因此，我们的未来工作将包括
进行田间试验以验证模拟结果。
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Abstract: To effectively combat the re-infestation of boll weevils (Anthonomus grandis L.) in cotton
fields, it is necessary to address the detection of volunteer cotton (VC) plants (Gossypium hirsutum
L.) in rotation crops such as corn (Zea mays L.) and sorghum (Sorghum bicolor L.). The current practice
involves manual field scouting at the field edges, which often leads to the oversight of VC plants
growing in the middle of fields alongside corn and sorghum. As these VC plants reach the pinhead
squaring stage (5–6 leaves), they can become hosts for boll weevil pests. Consequently, it becomes
crucial to detect, locate, and accurately spot-spray these plants with appropriate chemicals. This
paper focuses on the application of YOLOv5m to detect and locate VC plants during the tasseling
(VT) growth stage of cornfields. Our results demonstrate that VC plants can be detected with a
mean average precision (mAP) of 79% at an Intersection over Union (IoU) of 50% and a classification
accuracy of 78% on images sized 1207 × 923 pixels. The average detection inference speed is 47 frames
per second (FPS) on the NVIDIA Tesla P100 GPU-16 GB and 0.4 FPS on the NVIDIA Jetson TX2
GPU, which underscores the relevance and impact of detection speed on the feasibility of real-time
applications. Additionally, we show the application of a customized unmanned aircraft system
(UAS) for spot-spray applications through simulation based on the developed computer vision (CV)
algorithm. This UAS-based approach enables the near-real-time detection and mitigation of VC
plants in corn fields, with near-real-time defined as approximately 0.02 s per frame on the NVIDIA
Tesla P100 GPU and 2.5 s per frame on the NVIDIA Jetson TX2 GPU, thereby offering an efficient
management solution for controlling boll weevil pests.

Keywords: boll weevil; volunteer cotton (VC); remote sensing; computer vision (CV); YOLOv5;
unmanned aircraft systems (UASs); spot-spray

1. Introduction

The cotton boll weevil (Anthonomus grandis L.) is an insect pest that has caused more
than USD 23 billion in losses to the U.S. cotton industry since migrating from Mexico in the
1890s [1]. It continues to be a matter of concern for the U.S. cotton industry, particularly
in Texas, even though it has been eradicated from most of the U.S. Therefore, there is a
continued need for the activities of the Texas Boll Weevil Eradication Foundation (TBWEF)
as per the latest report of Sunset Advisory Commission [2]. The TBWEF has divided the
state into 16 eradication zones in which the Lower Rio Grande Valley (LRGV) is still actively
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functioning as it remains the region most prone to boll weevil re-infestation each year due
to its tropical climatic conditions [2] and proximity to the Mexico border. The vulnerability
of the LRGV is due to several factors, one of which includes its subtropical climate with hot
and humid summers and mild to cool winters without freezing conditions, allowing cotton
plants to grow and produce fruit year-round, providing a continuous food source for boll
weevils. Additionally, tropical storms from the Gulf of Mexico commonly carry boll weevils
from Tamaulipas State in Mexico to the LRGV [3]. In 2019 alone, 46,000 boll weevils were
captured by the foundation, indicating the severity of the problem and a continued need
for the functioning of the TBWEF. Without the eradication efforts by TBWEF, boll weevils
would have caused an annual loss of USD 200 million to Texas farmers [4]. Recent reports
indicate that the TBWEF’s efforts have significantly reduced the number of boll weevils in
Texas [5]. As per the latest weekly report published by the TBWEF, the season-long trap
average of boll weevils captured has decreased by approximately 99.91% from the year
2020 to the year 2024 for the Lower Rio Grande Valley [5].

Cotton (Gossypium hirsutum L.) is commonly planted in rotation with crops like corn
(Zea mays L.) and sorghum (Sorghum bicolor L.). In climatic areas like the LRGV, cotton seeds
can survive year-round, and thus, seeds in cotton that might have fallen during the harvest
in the previous year can grow among corn and sorghum plants in the present year [3,6,7].
Such plants are called volunteer cotton (VC) plants, which essentially act as weeds that can
emerge in fields of grain crops like corn, sorghum, soybean, and wheat. The necessity of
removing VC from various crops in the state’s production regions stems from two main
factors: yield loss due to competition and boll weevil control challenges. Volunteer cotton
plants compete with primary crops, reducing yields, with farmers generally aiming for
80–90% control using herbicides. In South and Eastern Texas, where the Texas Boll Weevil
Eradication Program (TBWEP) is active, the presence of volunteer cotton significantly
complicates and increases the cost of boll weevil control as boll weevils use cotton plants
as hosts. Consequently, the Texas Department of Agriculture enforces a zero-tolerance
policy for hostable non-commercial cotton plants (6–8 leaves or larger) in quarantined
zones to prevent infestations. To comply with these regulations and protect crop yields,
farmers must achieve complete control of volunteer cotton through timely and appropriate
herbicide applications.

To minimize the likelihood of boll weevil re-infestation, the TBWEF uses pheromone
traps to detect boll weevils and pesticides to eliminate them. As part of boll weevil
mitigation efforts in the LRGV region, fields with rotation crops are inspected for the
presence of VC plants at the edges of fields on a weekly basis. When VC plants are detected,
the number of pheromone traps increases. In addition to inspecting for the presence of
VC plants, pheromone traps are also inspected for the presence of boll weevils. If at
least one is found at the edge of a field, then the entire field is sprayed with a pesticide,
commonly Malathion (C10H19O6PS2) ULV (FYFANON® ULV AG) at rates between 0.56 and
1.12 kg/ha [8]. Uniform spraying is utilized because VC plants growing in the middle
of corn and sorghum fields remain undetected and so cannot be sprayed individually.
Spraying entire fields results in both increased management costs and environmental
concerns as well as destroying many beneficial insects.

Uniform spray applications can be avoided if VC plants growing in the middle of
corn and sorghum fields are detected and precisely located so that spot-spray-capable
unmanned aircraft systems (UAS) can be deployed. Detecting VC plants before they reach
the pinhead square stage and precisely spraying them with herbicides can eliminate the
plants and minimize the need for applying Malathion. However, some VC plants may
survive due to herbicide tolerance or inaccuracies in detection, in which case Malathion
application later in the season could be needed. To detect VC plants either early or late in the
growing season, remote sensing with images collected by UASs along with computer vision
(CV) algorithms using state-of-the-art convolution neural network (CNN) architectures
like Mask R-CNN [9], YOLOv3 [3,10,11], YOLOv5 [12], etc. can be used. Since its release
in 2021, YOLOv5 has become popular in CV applications and has been used to detect
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various objects like apples [13], face masks [14], safety helmets [15], etc. Due to its higher
detection accuracy and faster inference speed compared to other traditional object detection
algorithms, YOLOv5 was selected for this study as the most viable model for near-real-
time detection. Originally YOLOv5 was released in four different variants: YOLOv5s,
YOLOv5m, YOLOv5l and YOLOv5x. However, YOLOv5m was chosen as the desirable
variant based on our previous research [16].

In addition to detecting VC plants, the geographic coordinates of the detected plants
are needed for precise spray application. Therefore, geotagged UAS-based imagery was
used in this study. High-quality RGB (Red, Green, Blue) cameras have commonly been
used for object detection with YOLOv3 and YOLOv5 [13,14,17]. In most cases, radiometric
correction was not employed. Remote sensing imagery without radiometric correction is
susceptible to varying environmental conditions including illumination, atmospheric light
scattering, sensor noise, etc. [18]. Images that are not radiometrically corrected have digital
numbers (DN) that do not represent actual surface reflectance [19–21]. Hence, radiometric
correction was conducted in this study.

YOLO-series object detection algorithms generate bounding boxes (BBs) around the
objects of interest present in the images. The locations of these BBs are based on their pixel-
wise distances from the top-left corners of images [10,22,23]. Based on the BB coordinates,
central coordinates of each BB can be determined. Pixel-wise coordinates are not useful for
the path planning of spot-spray-capable UASs, so a method of converting pixel-wise BB
coordinates into GPS coordinates is necessary so that they can be used for path planning
for spot-spraying detected VC plants.

UAS flight times are limited by battery capacity, so an optimal flight path is a ne-
cessity to efficiently spray VC plants. Optimal path planning can be conducted based
on the travelling salesman problem (TSP), in which the goal is to determine the short-
est route for the UAS to spot-spray each of the detected VC plants and then return to
the starting point [24,25]. Different algorithms have been tested for this, some of which
include the genetic algorithm used by Moon et al. [26] and Shivgan and Dong [25], ant
colony optimization (ACO) used by Dorigo et al. [27], etc. In this study, ACO was used
because of its simplicity in implementation, feasibility, and faster speed to generate high-
quality solutions [27]. The determined optimal flight path was tested by simulating the
UAS with DroneKit-Software (3.3.0) In The Loop (SITL) (3D Robotics, Berkely, CA, USA),
MAVProxy [28], and Mission Planner (Ardupilot Development Team and Community).
DroneKit-SITL provides an application programming interface (API) to run Python-based
applications on companion computers of UASs whereas MAVProxy and Mission Planner
are ground control station (GCS) software programs to control and simulate UAS applica-
tions [29]. The communication between GCS and UASs is achieved through a binary serial
telemetry protocol called MAVLink [30].

The overall goal of this research was to develop a CV algorithm for detecting VC plants
in a corn field and use the detected locations for optimal spot-spray applications. The four
specific objectives were (i) to develop a computer vision (CV) algorithm with YOLOv5m to
detect VC plants in a corn field with radiometrically (reflectance calibrated) and gamma-
corrected, relatively low-resolution (1.2 Megapixel), multispectral aerial imagery; (ii) to
convert the pixel-based bounding box coordinates of detected VC plants into geographic
coordinates; (iii) to use the detected geographic coordinates of VC plants to generate
an optimal flight path with the ACO algorithm; and (iv) to simulate a spot-spray UAS
with DroneKit-SITL and the MAVProxy and Mission Planner GCS software based on the
generated optimal flight path.

2. Materials and Methods
2.1. Experiment Site

This study was conducted at a corn field (Figure 1; 96◦25′45.9′′W, 30◦32′07.4′′N) of
roughly 5.9 hectares (14.6 acres) at the Texas A&M AgriLife Research farm near College
Station, Texas. The majority of the soil in the experimental plot is Weswood silty clay loam,
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followed by Yahola fine sandy loam and Belk clay [31]. The corn plants in the field were in
the second leaf (V2) vegetative state when 90 cotton seeds each of two varieties (Phytogen
340 W3FE, CORTEVA Agriscience, Indianapolis, IN, USA and Deltapine 1646 B2XF, Bayer
AG, Leverkusen, North Rhine-Westphalia, Germany) were planted at randomized locations
among the corn plants to mimic the presence of VC plants in the field. Some were planted
in line with corn plants while others were planted in the furrow middles.
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Figure 1. Experiment field located at Texas A&M University farm near College Station, TX in Burleson
County (96◦25′45.9′′W, 30◦32′07.4′′N) where cotton plants were planted in the middle of corn field to
mimic the presence of volunteer cotton plants.

2.2. Image Data Acquisition

A five-band (Blue, Green, Red, Near-Infrared, RedEdge) multispectral camera—Red-
Edge-MX (AgEagle Aerial Systems Inc., d/b/a MicaSense, Wichita, Kansas; Figure 2)—was
mounted on a customized UAS (Figure 2) for collecting aerial imagery of the corn field
with cotton plants when the corn plants had reached tassel vegetation stage (VT) (Figure 3).
The reason for choosing this camera instead of conventional RGB camera was because its
images are geotagged and can be used for other advanced image processing techniques like
radiometric correction using open-source code provided by the manufacturer; moreover, it
gave the flexibility to use other bands like NIR and RedEdge when required. The central
wavelength and bandwidth of each spectral band are shown in Table 1. The images were
acquired at this growth stage of corn plants because we wanted to test the worst-case
scenario in which corn canopies are relatively larger and taller than those of VC plants.
This was shown by another study in which the lowest detection accuracy was for corn
fields when they had reached the VT growth stage [7]. The UAS (Hylio AG-110; Hylio
Inc., Richmond, TX, USA) was originally designed for broadcast spray applications. Data
were collected on 14 May 2021 between 11:00 a.m. and 2:00 p.m. central daylight-saving
time (CDT) at an altitude of nearly 4.6 m (15 feet) above ground level by using auto
exposure camera setting. This resulted in an approximate ground sampling distance (GSD)
of 0.34 cm/pixel. This altitude was chosen for two main reasons: one was for higher image
resolution and GSD while the other was so that efficient spot-spray application could be
performed from this altitude without causing too much of drift in the spray droplets. Since
the customized UAS was not designed for aerial surveying, there was no software interface
available to capture images based on overlap settings. Therefore, images were captured
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on a timer-based setting enabling an image to be captured every second. This resulted in
many unused and distorted images due to unavailability of overlap settings and vibrations
caused due to the design aspect of the sprayer UAS (generally, spray-capable UASs have
more vibrations as compared to surveying UASs). The UAS had a payload capacity of
10 kg/L. The UAS was flown at a speed of 2 m per second.
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Figure 3. (A) The customized spot-sprayer UAS flying over an experimental corn field (containing
some cotton plants planted to mimic as volunteer cotton (VC) plants) capturing five band multispec-
tral images; (B) RGB (Red, Green Blue) composite image showing a section of experimental plot
where corn at vegetative tassel state (VT) and some cotton plants mimicking as VC plants can be seen.

Table 1. Center wavelength and full width at half-maximum (FWHM) bandwidth of each spectral
band of MicaSense RedEdge-MX camera.

Spectral Band Central Wavelength (nm) FWHM Bandwidth (nm)

Blue 475 20
Green 560 20
Red 668 10
NIR 840 40
RedEdge 717 10
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An onboard computing platform, the Jetson TX2 (NVIDIA Corporation, Santa Clara,
CA, USA) development board that consists of a Pascal graphics processing unit (GPU), was
mounted on the customized UAS with the intent of near-real-time detection of VC plants
in corn fields (Figure 2). The Pascal GPU is low-cost, fast, and widely used as an embedded
artificial intelligence computing device. It consists of 256 NVIDIA Compute Unified Device
Architecture (CUDA; NVIDIA, Santa Clara, CA, USA) cores with 8 GB of RAM and 32 GB
of storage capacity [32].

2.3. Manufacturer Recommended Corrections

The individual band images collected by RedEdge-MX camera were corrected based on
manufacturer’s recommendations [33] using the reflectance panel of type RP 04 (Figure 4)
images taken on the day of data collection just before the flight.
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Figure 4. Reflectance panel of type RP 04 image with blue band sensor of RedEdge-MX camera taken
on the day of flight.

According to the manufacturer’s factory calibration (in which absolute reflectance
values were plotted along wavelengths ranging from 400 nm to 850 nm), the reflectance
values corresponding to blue, green, red, NIR, and RedEdge were 0.60, 0.61, 0.61, 0.60,
and 0.56, respectively, for the panel that was used in the study. As per the manufacturer’s
process, an area of the Lambertian panel from reflectance panel image was extracted and
its radiance value was converted to the scale of reflectance value, which was then applied
to the whole image to convert it into reflectance images. Source codes for both radiometric
and gamma corrections were used from the GitHub (GitHub, Inc., San Francisco, CA,
USA) repository of MicaSense [33]. The original source code was modified based on the
reflectance values for the panel used and for generating RGB aligned images for each cap-
tured image from the field data collection as seen in Figure 3. RGB images were generated
because YOLOv5 network architecture accepts input images with three channels (usually
RGB images). Python version 3.8.12 (Python Software Foundation, Wilmington, DE, USA)
was used in Spyder integrated development environment (IDE) version 5.2.2. The entire
process involves normalizing images by gain and exposure settings and then converting
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them into radiance followed by reflectance. The gain and exposure settings were used
to normalize the raw image data, correcting for differences in exposure time and sensor
sensitivity and allowing for accurate conversion to radiance values. The normalization
of images by exposure and gain settings is crucial for converting raw images to radiance.
Exposure time, representing the duration the camera sensor is exposed to light, and gain,
derived from the ISO setting, are obtained from the image metadata. The raw image
undergoes correction to account for dark pixel offset, vignette effects, and row gradient
inaccuracies. Following this, the corrected image is normalized using the exposure time
and gain, ensuring consistency across different images. This normalized image data is then
converted to radiance units (W/m2/nm/sr) by scaling it with the gain-exposure product
and applying the radiometric calibration coefficient, adjusted for the image bit depth. This
process ensures accurate and comparable radiance values essential for reliable reflectance
mapping. After this, in the study, unsharp mask (an image sharpening technique) was
applied as enhancement technique to improve visual sharpness, and then, gamma correc-
tion was applied to make the enhanced images appear brighter and visually closer to what
our eyes see [33]. For these, the original values present in the GitHub source code were
used. The unsharp mask technique uses linear filter to add a fraction of high-pass-filtered
input image to the original image that helps sharpen the original image by filtering out the
noise [34]. Similarly, gamma correction is an image enhancement technique that is used
to minimize the effect of non-linearity of the imaging sensors, thereby making the images
appear brighter with enhanced contrast and visually closer [35–37].

2.4. YOLOv5

Since its release in June of 2020, YOLOv5 [38] has become a popular algorithm for
object detection in CV applications. YOLOv5 was originally released in four different
variants, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, with the subscript based on
the network depth and number of parameters used. Here, s, m, l, and x represent small,
medium, large, and extra-large variants of the YOLOv5 network, respectively. The YOLOv5
network comes with pretrained weights from training on the Common Objects in Context
(COCO) [39] dataset, which consists of 80 different classes, such that YOLOv5 is pretrained
to detect 80 different classes. In this study, the network was customized to detect a single
class, “vc”, for VC plants. The architecture of YOLOv5 comprises three main components:
the Backbone, the Neck/PANet, and the Head/Output (Figure 5). The Backbone is a
convolutional neural network (CNN) responsible for aggregating fine-grained images. The
Neck consists of feature aggregation layers that combine features to construct the feature
pyramid network. These generated feature maps are then passed on to the Head or Output
network. The Output network handles the final detection phase of the model. It applies
anchor boxes to the feature map obtained from the previous layer and produces a vector
containing the category probability of the target object, the object score, and the position of
the bounding box that surrounds the object [40].

2.5. Image Data Preparation

Among the radiometrically and gamma-corrected RGB images, only the ones con-
taining at least a VC plant with corn in the background were chosen and then image aug-
mentation was applied using Augmenter Python library [41]. For this, rotate, flip_left_right,
zoom_random, and flip_top_bottom were used with probability values of 0.80, 0.40, 0.60,
and 0.80, respectively. These values were chosen so that each time an image was passed
through the augmentation pipeline, 80% of the time, rotate operation was applied; 40% of
the time, flip_left_right was applied; 60% of the time, zoom_random was applied; and 80% of
the time, flip_top_bottom was applied. In this way, we were able to generate a total of
521 RGB images from a total of 34 original images (containing at least one VC plant) that
were radiometrically and gamma-corrected, and each of them were of the original size,
1207 × 923 pixels. Out of these, 417 images (80%) were used for training, 77 (15%) were
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used for validation, and 27 (5%) were used for testing. The percentages of data split were
chosen arbitrarily.
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2.6. YOLOv5 Training

The YOLOv5m source code was obtained from the GitHub repository of Ultralytics
Inc. [12]. The PyTorch framework (Facebook AI Research Lab, Melno Park, CA, USA)
with torch version 1.10.0 and Compute Unified Device Architecture (CUDA) version 11.1.0
(NVIDIA, Santa Clara, CA, USA) were used to train the YOLOv5m model on Tesla P100-
PCIE-16 GB (NVIDIA, Santa Clara, CA, USA) GPU using the Google Colab (Google LLC,
Melno Park, CA, USA) AI platform. The model was trained with the original hyperparame-
ter values with initial learning rate of 0.01, final learning rate of 0.1, momentum of 0.937,
weight decay of 0.0005, and intersection over union (IoU) threshold of 0.50 for a total of
621 iterations. This essentially implied that YOLOv5m had reached the convergence within
the 621 iterations.

2.7. Bounding Box Coordinate Conversion

The first step involved in this process was to extract the top-left-corner coordinates
from the geotagged images of RedEdge-MX camera during the processes of radiometric
and gamma corrections, image enhancement, and RGB band alignments by modifying
the original Python script obtained from the GitHub repository of MicaSense [33]. The
extracted GPS coordinates of each geotagged image were stored in a comma-separated
variable (CSV) file. The YOLOv5 detect.py Python script was modified to extract central
coordinates of each detected bounding box, which were stored in a separate CSV file.
Another Python script was developed to utilize both the CSV files and then convert the
pixel-wise BB of the detected VC plants into GPS coordinates. In the Python script, GSD
was first converted into meter/pixel format and the decimal coordinates were converted
into Universal Transverse Mercator (UTM) format, from which northing and easting values
were extracted, and then, pixel-based central coordinates were converted into UTM-based
GPS coordinates using UTM zone of 14 during the conversion process [42].

Potential sources of error in this conversion process included inaccuracies in the initial
geotagging of images, variations in GSD, and the precision of the UTM conversion. The
accuracy of the detected bounding box coordinates was also influenced by the performance
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of the YOLOv5 model, which may have had a margin of error in object detection. Addi-
tionally, any slight misalignments or distortions in the image processing steps could have
propagated through to the final GPS coordinates. It was crucial to consider these factors
and apply appropriate error correction and validation steps to ensure the reliability of the
GPS coordinates derived from pixel-wise bounding boxes.

2.8. Optimal Flight Path with ACO Algorithm

ACO algorithm is state-of-the-art algorithm for many problems like vehicle routing,
open-shop scheduling, and sequential ordering problems [27]. It is based on the fact that
when ants move along a path from their colony to a food source, they deposit pheromones
that evaporate over time. This means ants travelling through longer paths have less intense
pheromone deposits, but the pheromone intensity is much higher along the shortest path.
In our used case application, VC plant locations were the food source that the artificial
ants would find through the shortest possible route. In many past cases, ACO has proven
to be widely accepted algorithm for determining optimal flight paths for UASs [43,44].
Source code to implement ACO was used from the GitHub repository of fabien-brulport [45].
The original source code was modified to generate a CSV file containing GPS coordinates
(latitude, longitude) in the order of nodes generated for the optimal route as the output from
the ACO algorithm. In our study, we set the values of pheromone weight, heuristic weight,
and evaporation rate as 2.01, 1, and 0.5, respectively, to achieve the shortest distance after
trying with different combinations of values. Similarly, the values for number of agents,
i.e., number of artificial ants (i.e., equivalence of number of UASs), and number of iterations
were 1 and 100, respectively. Mathematically, at any given time t, the probability that ant k
choses a path from i to j, as explained by Zhang et al. [44], is given by the following formula:

Pij
(k)(t) =

{
[τij(t)]

α[ηij(t)]
β

∑S⊂allowedk
[τis(t)]

α[ηis(t)]
β

if j ∈ allowedk ; 0 otherwise

}
(1)

Here, α and β are pheromone and heuristic weights, respectively. ηij (t) and τij (t) are
visibility and quantity of pheromone between points i and j. S ⊂ allowedk is a set of all the
possible points in a path that the ant can choose from. The pheromone amount determines
the visibility, which, in turn, determines the probability of choosing a path. Therefore,
higher pheromone quantity increases the visibility of a particular path between points i
and j and, hence, the probability of choosing the path increases.

2.9. Spot-Spray UAS Simulation

Once the geographic coordinates were saved in optimal order corresponding to nodes
obtained from ACO, the DroneKit-SITL (3D Robotics, Berkeley, CA, USA) Python pack-
age was used to simulate flight paths of UAS with a Python script and monitored on
two ground control stations (GCSs): Mission Planner version 1.3.76 [46] and MAVProxy
version 1.8.45 [28]. The MAVLink [30,47] protocol was used to communicate between the
two GCSs and DroneKit-SITL. This communication was accomplished by using transmis-
sion control protocol (TCP) for the master port and then port-forwarding the output to
three user datagram protocol (UDP) ports. The steps used to implement the entire process
are represented in Algorithm 1 as shown in below.

A Python script was used to read a CSV file that contained GPS coordinates of all
the nodes in order, generated by the ACO algorithm, which corresponded to the locations
of the detected VC plants for spot-spraying. After the UAS simulation was performed
successfully, we were also able to upload the CSV file with optimal flight paths on AgroSol
version 2.105.0 GCS, developed by Hylio (Hylio, Inc., Richmond, TX, USA). The AgroSol
software provided interface to control the spot-spray UAS that was customized. The
flowchart in Figure 6 shows the entire workflow starting from data collection to spot-spray
UAS simulation.
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Algorithm 1 Spot Spray Simulation Algorithm

Require: CSV file with GPS coordinates of detected VC plants
Ensure: Simulated flight path based on ACO algorithm on Mission Planner GCS
1: Procedure SpotSpraySimulationAlgorithm:
2: Open two terminal windows from Anaconda environment;
3: while paths set to the directory where MAVLink was installed do
4: if terminal window 1 then
5: dronekit-sitl copter --home=30.534351,-96.431239,0,180
6: --model=copter;
7: end if
8: mavproxy --master tcp:127.0.0.1:5760 --sitl 127.0.0.1:5501
9: --out udp:127.0.0.1:14550 --out udp:127.0.0.1:14551 --out
10: udp:127.0.0.1:14552;
11: end while
12: Open Mission Planner GCS;
13: while mode == guided do do
14: if UDP port == 14551 then
15: Open Spyder IDE and execute python script “vc spot spray.py”;
16: else
17: end
18: end if
19: end while
20: end
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3. Results
3.1. CV Algorithm with YOLOv5m for Detecting VC Plants in a Corn Field on Radiometrically
Corrected Aerial Imagery

Figure 7 shows graphs for box loss (IoU loss) and objectness loss on both training
and validation datasets. Before the 600th iteration, both the losses had converged, and no
improvement was seen beyond. The lowest value of box loss was found to be 0.028 at the
476th iteration while the lowest value for objectness loss, i.e., 0.009, was found at iteration
number 613 on the training dataset. On the validation dataset, the lowest value of objectness
loss was found to be 0.0094 at the 394th iteration. Similarly, the lowest value of box loss on
the validation dataset was found to be 0.0296 at iteration number 370. In Figure 8, graphs
of different performance metrices can be seen. It was found that the maximum value of
precision reached around 0.98 at the 320th iteration while the maximum value for recall
was found to be 0.77 at the 525th iteration. The most important metric out of all of these
was mAP@0.50, whose maximum value, i.e., 0.81, was reached at iteration number 613.
The mAP@0.50 value of 0.81 indicates that the model performs well when considering
detections with an Intersection over Union (IoU) threshold of 50%, meaning the predicted
bounding boxes overlap with the ground truth by at least 50%. This relatively high value
suggests that the model can accurately detect and localize volunteer cotton (VC) plants
under these conditions. At iteration number 521, the maximum value for mAP@0.50:0.95
was obtained, and this was found to be 0.33. The mAP@0.50:0.95 value of 0.33 highlights a
more nuanced picture of the model’s performance across a range of IoU thresholds (from
50% to 95%). This lower value suggests that while the model is effective at identifying and
localizing objects at a 50% overlap, its performance decreases as the required overlap for a
correct detection becomes more challenging. This indicates potential challenges in achieving
precise localization, particularly in distinguishing VC plants from the background and other
objects like corn plants, weeds, and soil. The precision-recall curve (PRC) resulted in an
overall accuracy of nearly 79% and the maximum value of F1-score was found to be 0.76 at
nearly the 40% confidence level (Figure 9A,B). The confusion matrix in Figure 10 shows
that YOLOv5m was trained enough to classify VC plants with an accuracy of 78% and loss
of 22% owing to the background class of corn plants, weeds, soil, etc. To mitigate these
misclassifications, several strategies can be implemented. First, increasing the diversity
and size of the training dataset can help the model better distinguish between VC plants
and other similar objects. This can be achieved by collecting more annotated images under
various lighting conditions and growth stages. Second, data augmentation techniques such
as rotation, scaling, and color adjustments can improve the model’s robustness to variations
in the field environment.

Figure 10 shows some detection results from the trained YOLOv5m model that resulted
in an average inference speed of 47 frames per second (FPS) on NVIDIA Tesla P100 GPU-
16GB. This model was later deployed on the NVIDIA Jetson TX2 GPU that was mounted
on the custom UAS (Figure 2) and resulted in an adjusted average inference speed of
2.535 s (~0.4 FPS) for images of size 640 × 640 pixels (Figure 11). The inference speed of
the YOLOv5m model on the NVIDIA Jetson TX2 GPU is a critical factor for assessing the
feasibility of real-time applications. Real-time processing typically requires a minimum
speed of 30 FPS to ensure smooth and responsive performance in dynamic environments.
The observed speed of 0.4 FPS indicates a significant lag, making it unsuitable for scenarios
where immediate detection and response are necessary such as in real-time monitoring and
intervention in agricultural fields. This low inference speed can be attributed to multiple
reasons. One possible reason could be the settings of the GPU hardware on the Jetson TX2
board, which could not utilize its maximum computing power.



Remote Sens. 2024, 16, 2754 12 of 22

Remote Sens. 2024, 16, 2754 12 of 23 
 

 

localizing objects at a 50% overlap, its performance decreases as the required overlap for 
a correct detection becomes more challenging. This indicates potential challenges in 
achieving precise localization, particularly in distinguishing VC plants from the 
background and other objects like corn plants, weeds, and soil. The precision-recall curve 
(PRC) resulted in an overall accuracy of nearly 79% and the maximum value of F1-score 
was found to be 0.76 at nearly the 40% confidence level (Figure 9A,B). The confusion 
matrix in Figure 10 shows that YOLOv5m was trained enough to classify VC plants with 
an accuracy of 78% and loss of 22% owing to the background class of corn plants, weeds, 
soil, etc. To mitigate these misclassifications, several strategies can be implemented. First, 
increasing the diversity and size of the training dataset can help the model better 
distinguish between VC plants and other similar objects. This can be achieved by 
collecting more annotated images under various lighting conditions and growth stages. 
Second, data augmentation techniques such as rotation, scaling, and color adjustments 
can improve the model’s robustness to variations in the field environment. 

 
Figure 7. Different types of losses that were obtained during the training process of YOLOv5m on 
training and validation datasets. 

Figure 7. Different types of losses that were obtained during the training process of YOLOv5m on
training and validation datasets.

Remote Sens. 2024, 16, 2754 13 of 23 
 

 

 
Figure 8. Different types of performance metrices that were obtained during the training process of 
YOLOv5m. 

Figure 10 shows some detection results from the trained YOLOv5m model that 
resulted in an average inference speed of 47 frames per second (FPS) on NVIDIA Tesla 
P100 GPU-16GB. This model was later deployed on the NVIDIA Jetson TX2 GPU that was 
mounted on the custom UAS (Figure 2) and resulted in an adjusted average inference 
speed of 2.535 s (~0.4 FPS) for images of size 640 × 640 pixels (Figure 11). The inference 
speed of the YOLOv5m model on the NVIDIA Jetson TX2 GPU is a critical factor for 
assessing the feasibility of real-time applications. Real-time processing typically requires 
a minimum speed of 30 FPS to ensure smooth and responsive performance in dynamic 
environments. The observed speed of 0.4 FPS indicates a significant lag, making it 
unsuitable for scenarios where immediate detection and response are necessary such as 
in real-time monitoring and intervention in agricultural fields. This low inference speed 
can be attributed to multiple reasons. One possible reason could be the settings of the GPU 
hardware on the Jetson TX2 board, which could not utilize its maximum computing 
power. 

Figure 8. Different types of performance metrices that were obtained during the training process of
YOLOv5m.



Remote Sens. 2024, 16, 2754 13 of 22Remote Sens. 2024, 16, 2754 14 of 23 
 

 

 
Figure 9. (A) Precision-recall plot, (B) F1-score vs confidence score plot, and (C) confusion matrix 
obtained after training YOLOv5m. 

 
Figure 10. VC plants detected in the middle of a corn field within the red bounding boxes (BBs) by 
trained YOLOv5m model. The values associated with each BB show model’s certainty that the 
bounding box contains an object of interest, i.e., VC plant. 

Figure 9. (A) Precision-recall plot, (B) F1-score vs confidence score plot, and (C) confusion matrix
obtained after training YOLOv5m.

Remote Sens. 2024, 16, 2754 14 of 23 
 

 

 
Figure 9. (A) Precision-recall plot, (B) F1-score vs confidence score plot, and (C) confusion matrix 
obtained after training YOLOv5m. 

 
Figure 10. VC plants detected in the middle of a corn field within the red bounding boxes (BBs) by 
trained YOLOv5m model. The values associated with each BB show model’s certainty that the 
bounding box contains an object of interest, i.e., VC plant. 

Figure 10. VC plants detected in the middle of a corn field within the red bounding boxes (BBs)
by trained YOLOv5m model. The values associated with each BB show model’s certainty that the
bounding box contains an object of interest, i.e., VC plant.



Remote Sens. 2024, 16, 2754 14 of 22Remote Sens. 2024, 16, 2754 15 of 23 
 

 

 
Figure 11. YOLOv5m detection of VC plants in a corn field by being deployed on NVIDIA Jetson 
TX2 mounted on a custom spot-spray-capable UAS. 

3.2. ACO Algorithm to Determine Optimal Flight Path for Spot-Spray Applications 
Ten random locations of VC plants in the experimental plot were chosen whose 

corresponding GPS coordinates can be seen on the left side of Table 2. The selection of ten 
random locations for volunteer cotton (VC) plants in the experimental plot was guided by 
the need to simulate realistic field conditions while ensuring the feasibility of spot-
spraying in a single flight of the unmanned aerial system (UAS). These locations were 
chosen arbitrarily to cover a diverse range of the plot, ensuring that the UAS could 
efficiently manage the entire area in one flight. The criterion for selecting these locations 
involved ensuring that all chosen spots were accessible and could be covered within the 
operational constraints of the UAS such as its flight time and battery life. Each location 
consisted of multiple VC plants (since, at each location, multiple cotton seeds were 
planted); however, only one plant’s GPS location was considered. This represented 
mimicking a real-world scenario in which VC plants usually grow in groups and where, 
by considering the location of one plant from each group, the entire spot consisting of the 
group of VC plants can be sprayed. 

In this case, the first location was also considered to be the home location of the spot-
spray UAS at which the flight began and ended. The right side of Table 2 shows the 
generated nodes in the order determined by the ACO algorithm. Nodes 1 and 11 
represented the same location from which the flight began and at which it ended. The 
optimal path generated for spot-spray application can be seen on webpage-based output 
(Figure 12) that was generated by the Streamlit Python package (Streamlit Inc., San 
Francisco, CA, USA). The bottom graph shows the number of iterations on the x-axis and 
the optimal distance covered on the y-axis (in kilometers). The total distance covered by 
the spot-spray-capable UAS along the generated path was found to be 674.17 m (0.67 
km/0.42 miles). 

Table 2. GPS coordinates of randomly chosen locations of ten VC plants in experimental plot (left) 
and the ordered coordinates/nodes after the application of ACO algorithm (right). 

VC Latitudes Longitudes  Nodes Latitudes Longitudes 
1. 30.5343 −96.4312 

 
ACO 

1. 30.53687 -96.4284 
2. 30.53431 −96.4301 2. 30.5359 -96.4283 
3. 30.53492 −96.4303 3. 30.53321 -96.4298 
4. 30.53386 −96.4299 4. 30.53386 -96.4299 
5. 30.53531 −96.4289 5. 30.53431 -96.4301 
6. 30.53484 −96.4299 6. 30.53492 -96.4303 
7. 30.53687 −96.4284 7. 30.5343 -96.4312 

Figure 11. YOLOv5m detection of VC plants in a corn field by being deployed on NVIDIA Jetson
TX2 mounted on a custom spot-spray-capable UAS.

3.2. ACO Algorithm to Determine Optimal Flight Path for Spot-Spray Applications

Ten random locations of VC plants in the experimental plot were chosen whose
corresponding GPS coordinates can be seen on the left side of Table 2. The selection
of ten random locations for volunteer cotton (VC) plants in the experimental plot was
guided by the need to simulate realistic field conditions while ensuring the feasibility of
spot-spraying in a single flight of the unmanned aerial system (UAS). These locations
were chosen arbitrarily to cover a diverse range of the plot, ensuring that the UAS could
efficiently manage the entire area in one flight. The criterion for selecting these locations
involved ensuring that all chosen spots were accessible and could be covered within the
operational constraints of the UAS such as its flight time and battery life. Each location
consisted of multiple VC plants (since, at each location, multiple cotton seeds were planted);
however, only one plant’s GPS location was considered. This represented mimicking a
real-world scenario in which VC plants usually grow in groups and where, by considering
the location of one plant from each group, the entire spot consisting of the group of VC
plants can be sprayed.

Table 2. GPS coordinates of randomly chosen locations of ten VC plants in experimental plot (left)
and the ordered coordinates/nodes after the application of ACO algorithm (right).

VC Latitudes Longitudes Nodes Latitudes Longitudes

1. 30.5343 −96.4312
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In this case, the first location was also considered to be the home location of the
spot-spray UAS at which the flight began and ended. The right side of Table 2 shows
the generated nodes in the order determined by the ACO algorithm. Nodes 1 and 11
represented the same location from which the flight began and at which it ended. The
optimal path generated for spot-spray application can be seen on webpage-based output
(Figure 12) that was generated by the Streamlit Python package (Streamlit Inc., San Francisco,
CA, USA). The bottom graph shows the number of iterations on the x-axis and the optimal
distance covered on the y-axis (in kilometers). The total distance covered by the spot-spray-
capable UAS along the generated path was found to be 674.17 m (0.67 km/0.42 m).
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3.3. Spot-Spray UAS Simulation on Mavproxy and Mission Planner Based on the Optimal Flight
Path Generated by ACO Algorithm

Once the optimal flight path was obtained (Table 2) by the ACO algorithm, the
DroneKit-SITL was used to simulate the spot-spray UAS by following the steps described
under the section on spot-spray UAS simulation on both GCS-MAVProxy and Mission
Planner as shown in Figure 13A–C.
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CSV file containing GPS coordinates of nodes generated by the ACO algorithm, and then, 
different settings for spot-spray applications can be used for real-life spray applications 
(Figure 14). Once the CSV file containing the spot locations was uploaded in this study, 
AgroSol generated a spot group as seen on the left side of Figure 14. It then allowed us to 
fill in the values for different parameters like the spray altitude, spray volume, etc. The 
spray mission could be uploaded to the UAS flight controller, and then, the UAS could go 
to each of the spot locations and precisely spot-spray at each of them. 

Figure 13. Spot-spray UAS simulation on MAVProxy (A,B) and Mission Planner (C) GCS. Image A
shows the simulated UAS flying from node 1 to 2 while image B shows it flying from node 4 to 5.
Image C shows the simulated UAS flying from node 8 to 9.

3.4. Spot-Spray Mission on Agrosol GCS

The AgroSol (Hylio Inc., Richmond, TX, USA) GCS software allows one to upload the
CSV file containing GPS coordinates of nodes generated by the ACO algorithm, and then,
different settings for spot-spray applications can be used for real-life spray applications
(Figure 14). Once the CSV file containing the spot locations was uploaded in this study,
AgroSol generated a spot group as seen on the left side of Figure 14. It then allowed us to
fill in the values for different parameters like the spray altitude, spray volume, etc. The
spray mission could be uploaded to the UAS flight controller, and then, the UAS could go
to each of the spot locations and precisely spot-spray at each of them.
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4. Discussion
4.1. VC Detection with YOLOv5m

The potential application of multispectral remote sensing imagery for VC detection
in other crops was mentioned by Zhang et al. [48] when they were developing methods
of discriminating cotton plants from other crops based on spectral reflectance properties.
Similarly, in our previous study [49], we were able to show that UAS-based multispectral
remote sensing imagery can be used to detect VC plants growing in corn fields. In another
study by Westbrook et al. [50], the authors were able to detect early-growth-stage VC plants
with aerial remote sensing RGB imagery. The study reported in this paper took motivation
and recommendations from all the previous studies as it made use of multispectral remote
sensing imagery collected by a UAS. However, the difference lay in the use of a CV
algorithm as opposed to conventional image processing techniques like discriminant and
principal component analysis (PCA), maximum likelihood classification, linear spectral
unmixing, etc. In the study conducted by Zhang et al. [48], they were able to discriminate
cotton plants from other crops like corn, soybean, and sorghum with 100% accuracy;
however, the method used a handheld spectroradiometer or the ones mounted on a tractor
very close to crop canopies. This means that their method was limited by two major factors:
the first one was that it could not be applied to larger areas of field and the second one was
that it was a time-consuming process that was not suitable for the near-real-time detection
of VC plants. Our previous study [49] used remote sensing multispectral imagery and some
classical machine learning techniques to make the process of VC detection semi-automatic;
it, however, could not produce a classification accuracy greater than 70%.

In this study, we were able to develop a CV algorithm with YOLOv5m to detect
VC plants (before the pinhead square growth stage) growing in a corn field at the tassel
(VT) growth stage using multispectral remote sensing imagery. In another study [3], we
were able to detect VC plants with more than 90% accuracy in an early-growth corn field
(V3 vegetative growth stage) with uncalibrated RGB imagery. YOLOv3 was used, which
resulted in a nearly 29% higher classification accuracy than the previous approach [49], but
the trained model was less robust to illumination conditions and environmental factors
as the images were not radiometrically corrected. Moreover, the relative height difference
between VC and corn plants was less compared to that in the study reported in this paper.
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In our current and latest approach, reported herein, we were able to develop a CV
algorithm based on YOLOv5m, which was more robust to illumination conditions and
environmental factors as it was trained on radiometrically corrected imagery [51]. By
training the YOLOv5m model on radiometrically corrected imagery, we were able to
generate a more reliable model because it was trained on more accurate data [21]. With
the current approach, we were able to classify VC plants at 11.43% higher accuracy than
the previous method [49] as seen in Figure 10. It is also noteworthy that similar detection
accuracy was obtained in a corn field when the plants were at the VT stage unlike the
V3 stage reported in the other study [3]. YOLOv5 offers several advantages over its
predecessors and other detection models such as Faster R-CNN, EfficientDet, and SSD
(Single Shot MultiBox Detector) that have their own strengths and weaknesses. Faster
R-CNN is known for its high accuracy, but it often comes at the cost of slower inference
speeds, making it less suitable for real-time applications. EfficientDet balances accuracy and
speed effectively, but it requires extensive hyperparameter tuning and larger computational
resources. SSD offers good speed but generally lags in accuracy compared to YOLOv5.

The overarching goal of this study was to speed up the management aspect of the
Texas Boll Weevil Eradication Program (TBWEP) by simultaneously reducing the chemical
costs. Therefore, apart from developing a system for the near-real-time detection of VC
plants, it is also required to develop a detection algorithm that results in minimal false
negatives (i.e., maximum recall). This way, we can minimize the possibility of missing VC
plants in the middle of corn fields that can potentially act as hosts for boll weevil pests. In
other words, for our used case scenario, our algorithm can be tolerant to false positives
but not to false negatives as the damages incurred by boll weevil pests are much more
than the extra costs incurred due to spraying some undesired locations because of false
positives. For this reason, the model obtained at the 525th iteration can be used (Figure 8).
However, if high precision is required (like in the case of saving chemical costs), then the
model trained at iteration 322 can be used, resulting in a precision as high as 98% (Figure 8).
To quantitatively analyze the trade-offs between precision and recall, we examined the
performance of the YOLOv5m model at different iterations. The model at the 525th iteration
demonstrated a maximum recall of 0.77, which was critical for minimizing the possibility
of missing any VC plants. This high recall value indicates that the model could detect
most of the VC plants, thus preventing potential boll weevil infestations. However, this
came at the cost of a lower precision, meaning there were more false positives. In our
context, this trade-off is acceptable as the primary objective is to ensure no VC plants
are missed. The overall performance of the model is represented by mAP@50, whose
maximum value was found to be 81% at the 613th iteration (Figure 8). The performance of
the trained model can be improved by adjusting the confidence threshold value mentioned
by Yan et al. [40]. Apart from these, we had generated 521 images from a limited number of
datasets, i.e., 34 images, by using image augmentation techniques. In this way, the trained
model reported in this study can be regarded as relatively more generalizable [52]. While
image augmentation techniques can enhance the diversity of a training set, they may not
fully capture the variability present in real-world scenarios such as that due to different
lighting conditions, plant growth stages, and environmental backgrounds. To improve
the generalizability of the model, several strategies can be implemented, one of which
is increasing the size and diversity of the training dataset by collecting more annotated
images from various field conditions and growth stages, which can help the model learn
more robust and generalizable features.

4.2. ACO Algorithm for Optimal Flight Path and Spot-Spray

UAS flight parameters such as aerial speed, flight altitude, yaw angle, etc. were
assumed to be fixed and the optimal path generated, shown in Figure 12, was based on
equal weights assigned to both pheromones and heuristic parameters. These assumptions
were like the ones made by Ma et al. [53]. The only constraint used in our implementation
was the distance between two GPS locations. However, in other studies, parameters like the
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yaw angle were used as some of the constraints [44]. The ACO algorithm being stochastic
in nature generates sufficiently good solutions based on randomly generated variables but
no globally optimal solution [54]. Therefore, the optimal path shown in Figure 14 may not
be the global optimal solution but simply one based on the randomly generated variables
used in our study. The parameter values used for the ACO in this study may not be the best
ones but were tested with reasonable combinations. From past studies, it was found that
ACO is highly sensitive to the evaporation rate, which is considered to be the equivalent
of the learning rate; therefore choosing the right value of this parameter is crucial [55,56].
Ojha et al. [55] found that the performance of ACO decreased beyond the 0.5 value for the
evaporation rate. Hence, we chose to use 0.5 as the evaporation rate in our case (Figure 12).
A total of 11 nodes were generated from the 10 VC plant locations, as seen in Table 2—left
and 2—right. Nodes 1 and 11 represent the same location from which the UAS began and
ended its journey traversing through the optimal path generated (Figures 12–14).

5. Conclusions and Future Work
5.1. Conclusions

This paper has presented our findings on the successful application of a CV algorithm
based on YOLOV5m for the detection of VC plants in a corn field during the tassel growth
stage using UAS remote sensing multispectral imagery. Our approach showcased im-
proved classification and detection accuracies compared to previous methods. Additionally,
we demonstrated that a low-resolution imaging sensor, coupled with preprocessing algo-
rithms such as radiometric and gamma corrections, can effectively detect VC plants while
maintaining robustness against variations in illumination and environmental conditions.

Furthermore, we showcased the practicality of the trained YOLOV5m model for near-
real-time detection by deploying it on a computing platform mounted on a sprayer UAS. This
implementation enabled the detection of VC plants in full-scale images (1207 × 923 pixels)
at an adjusted average inference speed of approximately 0.4 FPS on a Pascal GPU of the
Jetson TX2 development board from NVIDIA.

Moreover, we successfully converted the pixel-wise bounding box central coordinates
of the detected VC plants into GPS coordinates. This allowed us to generate optimal
flight paths using the ACO algorithm for simulating spot-spray applications. Overall,
our research has led to the development of a CV algorithm capable of near-real-time VC
plant detection in corn fields along with spot-spray applications utilizing a customized
spray-capable UAS. Through this work, we have created a system with the potential to
expedite TBWEP mitigation efforts possibly at a reduced management cost.

5.2. Limitations and Future Work

We encountered several limitations in our study. Firstly, we only had 34 original
images that contained VC plants. To address this issue, we applied image augmentation
techniques to the entire set of original images. Although this approach could potentially
lead to data leakage, Saulo Barreto [57] has shown that it can still be used effectively in
cases with limited data. Another limitation was observed in our study regarding the slow
inference speed of VC detection when deploying the trained YOLOv5m model on the Jetson
TX2 platform. This limitation can be mitigated by configuring the hardware appropriately
and deploying a lighter version of YOLOv5 for real-time applications. Lastly, the simulation
results of spot-spray applications were not validated under field conditions. Therefore, our
future work will involve conducting field tests to validate the simulated results.
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