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AT AN E R EHE R I5E RN AT B ARt PARTEaY Al Izh it SR T8N

BE  AT7TEXHaRAPRRRER (KMERSRER) NEXEIN, BVERIEEX (EXEEY)
IER eEREEY) SREEYPONRESRER (BEEY) BEENEE. BRrIsEEmins
TATHEREE, XEFaSMEREEAIERPEEKNEBIRER. SXEEERERAZITEE
(5-65M) B, SIS AR RERIIETE. Eit, @0, BAFHERIBRNIXERH T R I8
EXEE, AERWRT YOLOVSmAETREMERER (VT) UM EEBEERIEA. FINHAR
FERFE, BANAI207x2MGENER L, SERERFITRE (mAP) AX79%, RXHZFE (loU)
J950%, PSSEEHEZERIT8%, £ NVIDIA Tesla P100 GPU (16GB) L, I MEIREE SR 47 i
(FPS) , £ NVIDIA Jetson TX2 GPU A& 0.4 i, 1XZRE 718 MIEREXT SRS B AR T IR RN
I, Lo, BAIBRRTETHANTENME (CV) &%, EEEFINTASH WHESE (UAS)
ERBERAFRIRAE, XFET UAS N5 A AR K EIT SO e NFIERIESEY), 7T
NVIDIA Tesla P100 GPU £, “ITJSCRT” #ENX AEMELY 0.02 >, £ NVIDIA Jetson TX2 GPU A&
£925%, NmAEHisRRERERHT SR EERRAS =,

REE : BRRER,; TR (VO) ; &R HEHME (CV) ; YOLOVS, TABR KITHEASR
(UASs) ; i

1.5

B85 EH (Anthonomus grandis L.) 2—FhEH, B 19 tHE 90 LN EFEEHTHETR
LIk, BfeEERer- SR 78 230 ZZEThYRE1]. RECEEEEAT D HXFER
b, EEMAREEREWXEREM, AEHEESERFERMN. B, BEEEmIERSH
BiRE[2], BrRFEINERRERIRRESS (TBWEF) RUENNBIFENTEK. ZEES
Bz 16 MEFRX, HE=E0A T (LRGV) HERIRFEEXIIE.



HTFEATSEZELIURELSFAENE, ZBXEFENERRRERTHEINE
MENXE., LRGVAREMHER/LIMEREMRN, HPhz—RHIRGSE, EER
RENE, FRFBMRK, REEKEY, XEEHREEKREFEKNER, IERR
ERREATERENEYRE. i, REEATENENEESHERRFERNER
EHEEFIRENHEILRGV[3], RTE20195, ZEE SR 746,000 I8 REH,
PR ES AR TBWEFFLEEN VBN, NRIFBETBWEFAIKRE N, #8512
S ERBAERFINNKRRERSE2{ZETNIREK4]. RIEARSEZRE, TBWEF
B HEEZERLD T ERFIMNABRRERIES]. 1RIE TBWEF RHHNRFHER,
M 2020 FF) 2024 F, FERE=EISHRIOBRRERNENFTDEIHERD
T£399.91%[5],

181 (Gossypium hirsutum L.) BESEXK (ZeamaysL.) FIEZR (Sorghum
bicolor L.) E/EEeHh. FEELRGVIXHNSIRIBX, REMFrILIeFEE, Alt,
ERI—FUERER B nT et Z AR A LAES N EAR IS RIER P AER(3.60.7], X
FBEYIHBFR B SR (VO) B, ARLEENEFE, aLIEEX. B8R, K=
INEERFEYOBEERI. EMNEFXIERN, YWRERSTENPINBEREE,
FEEMNRERE: TRHESHE-ERAFIIRRRERIGIAIi. BEREENSE
RS, BETTE, REEESEFERRERIEHIZI80-90%, ErafEseiHm
FETRTEATNZRED, ErEEHiRiR R ERIRRITXI (TBWEP) IEfE#ITH, BER®
EYNFEREENTIRRRERaNERMFINA, FARBRRERLIRTIEY
HEE. B, EiEN R ERRIIEE X e fER e gk (6-8RH+
HEK) LITERPBER, LILLEERER., AT7TETXENEHRPEIFTE, K
R iEd & A FIE BAIBRE R R AR H B R,

NTERIMUER R ERBEREMAITIEEN, TBWEF REERIEHFICUIERS
B, HERARGEEIEKX, /FN LRGV XSRS ERERTFN—ES, SEE
SIEBEEHIEEYNEE, EENESE VCEY., MieNE Ve aiet, (SEXMEMH
HEESEN. BRTHEE VCIEYNEEN, TN EEEEEHTIEEERRRER.
WRARBELET—R, BABRNHBESEAKRE, BESDHMEE
(C10H1906PS2) (KB E (FYFANON®ULV AG) , FHETE 0.56 & 1.12 F5a/0
ZI8[8], BT EXIBSRESEERKE VC BRSNS, EFEERmEsfh, 3
BN A TR SEEEMAAEN. RERARITFZE 5B RABIAR.

NERBEEEARINBRHEBERNEEREVHEC VR HBHREN, NMtEPER
BRBEEDNTASH KINES (UAS) , BATLUERIISERE,. EREREDENL
INCDIRBTER Z BUBHTHEM, FHEiitb BRRERIF TSR, JLUBRXLEY), H
RAREMRMERSRMBNER, A, BTXIRERRIM SN ER, —
LHHBENTESEE PR, EXMERT, AT EHURSENADARRE. 7~
THEEKSHNE PRI NEHBEY, JLAERRUASKENERIGIARERRT
HEERMERML (CNN) 224 (fNMask R-CNN[9]. YOLOV3[3,10,11]. YOLOV5 [12]
%) BITENME (CV) EiE#HTEREN. B2021F&HLEAEK, YOLOVSECVRIA
PRERITER, HEBTEN



SR, WER[13]. OZ[14]. REME[151%. HTFSHEMMERMCUEEEL,
YOLOVSEEESASNIBEIIERAVEREE, FEWEARHARF, YOLOVSHIEAR
THIREEY, BFALRHEN, ¥, YOLOVS &% T FARAIZSA: YOLOVSS,
YOLOv5m, YOLOVSIFIYOLOv5x, #ATm, EFENIZEIRIAR[16], YOLOVSm#KIES
BB,

BRTIENEIVCIES, EEEENEEYAIRATR, LUERTIEREERA.
Hitt, AARERTHEMIBRENTEATER. SREMNRGB (A6, &6, EfE)
EERE BT YOLOVIFIYOLOVSEIIARIEMI[13,14,17], TEARZSEIER T, RFITEFR
IE. R TESIRIENEREGAZZEIZTIMNESRMNRE, IR, KRS,
BRERIEFE[18], RATIRPRENBEGNHFRHE (DN) TiERFLRIbFRRST
FR[19-21], FElb, AARHIT T EIGIRIE.

YOLO ZFHBirENE E2EE G P RBBIREREEMIOFHE (BBs) , X&
BRIENMNERETENSEGE LAGBERAIEE10,22,23], ETFHRIENSER, aTLA
MESMAFENROSIR., BRLFTFEERERENNETANRZRNEEMRFHT
4k, FttBEDEFGRLTRERA GPS AR, LUMEEIEBBT I NEIRIZRESRE
YT RIRAYER R ALK

TANEZH KT EZEREFEMRE, BN VITREANTFEHERESHER
BEMEVEN. RMBERINTUEFIRITERA (TSP) ki#fs, HERERELTAN
EFANEMONENHEHEDHITRENREREZR, REREREHK[24,25], XTI
B, BEMKTARENE L, Hb—LE1E Moon 2 A[26]F] Shivgan F1 Dong[25]{#FEHY
BEBIEEL, Dorigo FEARTIERIMEHLI (ACO) F., BEAHRRSH, HTIEHAHKE
ST EEE, 51T, HEEFERMERSRENBRSE27], RLRBTIWEH I,
1812 {#F DroneKit-Software (3.3.0) In The Loop (SITL) (3D Robotics, {H5EF], CA,
£E) . MAVProxy[28]F] Mission Planner (Ardupilot FFRBEIBAFIHEX) SHHRERIRM S
TEREZFFHT TR, DroneKit-SITLIR T — N FFERFMHIZED (AP1) , BFELAN
Uit B L1z TE F Python BN FBFE R, MIMAVProxyF1Mission Planner 2 it 1% il i

(GCS) HH2RF, BATEHFIMENTZANBIRAR]. GCSHITANZ BREEREE
— T IMAVLINK B Z#HI SR @ MM ECIRAY[30].

AHRNDABIREFA—MitETIMRE (CV) 8%, BTFEEXKAEPICNHES
'Y, HABRUNENGERTRIENERBEENE. IMEKBRE: () A
YOLOVSmFE—MitENME (CV) i, BFEEKETENEEESEY, FHRE
5 (REERE) FIIMERIEREIES PR (1.20k&R) SXEMRER,; (i) &
NN EEEDNET RN FIERIREIE OIBAR,  (ii) FRENZINESE
B
AOMPIRAMGR, (FRMEFENE (ACO) &REIL ITHRER, (iv) EFEMBRMN TR,
{EFADroneKit-SITLFIMAVProxy#IMission Planner GCSERAAEHLE mMEE T AN,

2. MRS AE
2.1. SE5im it

KRR BAERFEIMNAZ R E AR P MU T BTN K F N —1E
Kith (B1; FaL96=25 459 ' ', Jb&30=32" 074" ' ) HHTHY, ZEKMERY
5900 (14.6328H) . LRXHIKEPD LEAFIAEMERFMTIEL,



B 1, st TR ARNBREXRFHMITAIE R A&M KK (B4 96025 459 * *, b4 30°
32' 074 ), ERRE, AREEMIMEERKINTE, LUSIEESBAREERRELR.

2.2. Bg B RE

—EBRKER (R, &6, 46, T, 4i8) SHEEHEN Red-Edge-MX (HH
AgEagle Aerial Systems Inc 32{ft, UAMicaSense B XizE, (MTIEFEERMESIE; B2) ——
WLEEENEFINEAMNRS L, BFEEXEKRAZEITZE (VT) HRETERERN
ERERIEEER (B3) . EEXFENMARERNIRGBENNERR, HEGHH
BiRE, HETLERHIEHRENTFIRAEHTESTRESSREGLERA,; 1k,
IR T EZENFEREMIKE (WNEL/MILN) BIREE. SRR
WERARIFT7R. EXDNERBERIE KN BRI EGEE AT EEN X &ARIER, B
EXRBEENLVCEEARES. XEEMHARPHERR, EPEKENRECNEE
HEEEIIABIVTERMERR7], TAVERSE (Hylio AG-110; ) EEEFFEHTMELH
HHylio ARRYIE A BEERAMIZITHY. FUET 2021558 4 HPFIIRE T2
(PREDH) WE, afIFgkirsocRk (158ER) &, FREMBYVENRE. XS
HUWESRAFIEE (GSD) Y9R04EX/MGR. BEXIMEEERIMNETERE: —2RS
BOPEEGSD, —2ENZBEHTEINRBRAAN, F2SHEERERIEEY &,
HFEFNEANEZRAZR I NEMRITH, FLsE e BRRERERBIEESIR
EfREG. Elt, BGEEEEECENIRERRN.




EETENSRRET, SRR —IKEGR. ATREESREUNBELTANE
g (BF, JEEBLEANKSGLENELANRSIRAERIZ) AIRITTSES EAYRD,
XS TIFERERNMRENER. ZAANBNEREEETEN 10 T=/Ft. %%

AHLA 2 KAPHIRE K47,

\
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On-board computing platform
(NVIDIA Jetson TX2)

Multispectral camera (MicaSense |

RedEdge-MX
)+ Bt#& RedEdge-MX ZIEETENATFRIAMBE

el

LT O
E& {VT) YT KEI— B VC BRI B L

% 1 . MicaSense RedEdge-MX AEHEMUEKRPORKMEEFE (FWHM) 8,

SRR ER B (403K) 2EEESTE (4K)
[z 475 20

Fe 560 20

A=) 668 10

SELES 840 46

in

717 10




—fNEITEFS, BIHRAET-EERAERE T (GPU) HAEKAY Jetson TX2 (ZfF
KaaE, EERRAR) AR, BEEEEfNEANL, BFEEKEFITFL
Ela‘ﬂﬂ*ﬁiﬂﬂ?%%*ﬁé% (E2) . 1HETRGPUR—FPMEELA. HREEZERINEmAR

EREITHIRE. TH2SNEFERFZ—ITEIRSEEEM (CUDA; HfHiX, XEER
hh) =4ERL, EB8GBIAFFI32GBIIFE=IE[32].

2.3. HE A RV EFE It
B RedEdge-MX fAFLRERIZNKRER ERIESISRAIEI 331 TRIERT,
ERRIREHIERES X CTRIA %‘EH‘%E’J RP 04 BUZEIRENR (B 4) RIEHR.

RIEFIERN L RE (HPEXNRETEEGEM 400 KE] 850 PLKIRIKLE
) , ERRPERIERNNMAEE. S, 6. IRII/MILLLN RS ERED 5!
730.60, 0.61. 0.61, 0.60 F00.56, IZMRFNEFHAIMIE, MRIIEREREGPIRI=
(BFEIR—RXE, FREEEREERRARNFRENRE, AEEENATED
EgILEEE RN RRE R, ESRIEFINSRIERYRCEBIYZRE MicaSense BY
GitHub (GitHub, Inc., San Francisco, CA, USA) fZfi&ZE[33]. RIEFHERINERAY
REIFREXNRIGEAIEHT T8N, HFERSE N REGRIAEERERITTEY RGB
El%, W& 3 . 45 RGB BUREREI YOLOVS MEZMESEE =188 (&
®= RGB EIfR) HUMIANER. 7 Spyder EpFF AR (IDE) 522 fRHP{ERT
Python 3.8.12 jk (Python ¥ EES, EEIFREMNEI/RIAIN) . BMNIECEES
B CREXE G TS —Hﬁkﬁ SRR THE R



BellEnrERE, ARERSE, EREDMBECRERNECREEGEE, &
I[EERAHEMERRERENER, FRITERERAEREE, BYBEIEERE
MEGHTRECS TRREEGERNMEREESXEER. BYIE GEREIERSE
FEBETHENFEME) figE (RRISORE) MNEGITHEFTIRN. REEGEE
RIE, LIEBEBGERRE. MEMNIITHENERYE, 25, ERAREHEME
mRIERNEGHTINEL, BRAREGN—EE. AR, BESEGHESER-
BRYETFRIHITAEIN, FN A NEGAIRARIVEN R, KEERNERERM
(W/m2/nm/sr) o XPMIIEFRT A RIS RRGIFTOFRER I LLAYEREE. X
ZE, MRPNATHRIER (—HMEGRRURAK) (FABERRARESWTEME, 2
[E N PRI IER (IR R R R BHR B ERR, R LERIABINIRBRERIR
[33]. MFIXLE, (AT GitHubRRIBHFENRIGE. RHUEBRAERZMIERS 15
BERKAANEGN—EBoRNERREGS, BISTIERERSEHRICRIBE &

[34]. BE, MFEREE—FERERRA, BT &RIMEAMGERERIVIREERE, M
EEGERKERS, MEER, MK EERIR3B5-37).

2.4. YOLOvS

B20208F6 B &fLAK, YOLOVSER AiTEMNMILN B+ iRiTH BirGNE X,
YOLOVS SR LA AR ERIZAYOLOVSs, YOLOvSm, YOLOvVSIFIYOLOvSxA&%, H
FRIRRTNEREMERNSHEE. AXE, sm. FlxDBIFRIYOLOVSMLZAIIY
NTR: NB R RBIFIFEKREY, YOLOVSMZEH B E Common Objects in Context
(COCO) HWERE EIGMTUIGNE, ZEEESZ0NAREIIZEE, HLLYOLOVS
IR ELACMB0NAERIZEE. EARARH, MEHEHLAGUEANES] "ve" , B
FVCHEY. YOLOVSMEHZEMBIE=1"FEHH : BTMNE. M ISFIEREME
(PANet) FOLEB/HMHERLE (ES5) . BEFTNEE—MERMENSE (CNN) , ARR
BRRNENEGR. NEHSFTEREGEEN, XEEBFHIASERMEERF IS FIEMLE,
XL R E FE Rt E R R LB R ak i NS, B RN IER B IR LN, &
BHAEMNATN E—ERENEEE, F4ER— 1 mE, HPEaBirxsauzLag
R NWEREDIUKREEBIRNREIBFERNME40].

2.5 g BUR &E&

ERTEFRENMSRENRGBEIGRY, REFRPLEE DS —RERAERDN
VCIEYINE(G, SAS{ERPythonfYAugmenter EEFH{TEIRIGE[41], ALk, {ERT rotate
flip_left right., zoom_ randomFflip_top bottomiR{E, HEZR({E% 5790.80. 0.40. 0.60F00.
80, XLEANSEEN T HEFESXEGETIEEEER, 80%AIRTEIRAromaretRlE; 40%
BIBT RN S lip_left_right#BAE; 60%BIBIIEINL FBzoom_random¥BAE; 80%RIRT B FR/Tip_
top_bottom¥R{E, BILIXFAR, FIIMNBHEMBERBEGR (EVEE—RVCEY) 4%
%Y RS2 11ERGBEIR, XELEGRALIESREMNMDSRIE, FESEERGIRIN EB5
[Rea RN, BP1207 < 923(R&., HA, 41718E& (80%) AFIIE, 7708 (15%) AT



FFIE, 27 Bl (5%) BTN, HiESEIRILHIRIERIEEA.

Neck/PANet Head/Output

-

5. YOLOVS ROZRERMIAYSAEIA,

2.6. YOLOv5 %k

YOLOvSm ARASZM Ultralytics AFAY GitHub FEREEFIREMI[12]. FEF
PyTorch #EZ8 (Facebook AI Research Lab, Melno Park, CA, USA) , torch fRZAJ9 1.
10.0, HE%—IgRLH) (CUDA) HBRAFA 11.1.0 (NVIDIA, Santa Clara, CA,
USA) , {E45HRHI P100-PCIE-16GB (NVIDIA, Santa Clara, CA, USA) GPU t{$H
AEK Colab (Google LLC, Melno Park, CA, USA) Al &¥H YOLOvSm t&EHITII
%, ZRBFRFRIGESHERITIIE, YIRFEIZERN 001, REFIEHO.1, HE
73 0.937, NEZR/I 0.0005, RXFELL (IoU) BHEN 0.50, BFHER 621 0%, XL/
ERE YOLOVSmM 1 621 JRIEAHIAE) 7 WK,

2.7. A FRIE R iR FE iR

IR E—E 2 RedEdge-MX A ATHIBFRCEG HIRENVE kiR, XL
BRIEESIIE. MISIRIE. EHIEEFN RGB IKERFISFHNSRES, ETEHM
MicaSense B GitHub FFERERISRIIRER Python FIAN[33], B MEEIRCERIVIEEAY
GPS IR IFEE—MESHIRERE (CSV) X, YOLOVS detect.py Python J{IA
Wets ol DU BU M B ROIN FAERI R OAMR, IXECAMRIRAETE—NEIHRAY CSV XX
e, IEFFRTB— Python A, FFREIRSFIEXFEA CSV X4, AEEHENE
B9 VC EYIRRE SN FIELEIRA GPS A4R, 7EiZ Python fiAT, BE%ci§ GSD %k
TKAGEE, B NERE B REMERIE (UTM) 18X, MRBUtRFIER
BME, REEHRIREPER UTM Xif 14 EETGRENPOLIRERAET UTM
B9 GPS A4HR[42],

A RS RE B NRER R E ARG IR RCH A ERME. GSD A9
LA UTM S&IRRIRBE., HilIZIRI NSRRI EIR I B R EIMERERISI IR,



YOLOvS SHEEYIRE NPl gEFEIREIIRE. Lo, BEGCESRPAEEFINGE
UK EE AT REEIEEIREZAY GPS Minh, EXEENRELBIIXLRE, FNA
EHANRERIEFIGIEAE R, LSRN EGRAAFERES LAY GPS ARRIA FEH,

2.8 WEEELARSRA KITIEE

WA RERIENERRREE, FaFERE RN E R E A
MSSHEIA27]. EETXF—FL: SENEENUEHEIRYIRRIBERHN, ©
MNEBTMEER, EERSHENERNERMZEL. XEWE LERIKIMZITERIEWE
THERRRRY, BoERERENERREBEESES. EHNNEGINAS,
Ve I VERATENSEIR A EENREERINEWR. XS E6H, W
HEACHIERRE ZEZIIRELT AR CITRERINEIE43.44]. SCHMEEIZRYIR
REBERE fabien-brulport B9 GitHub FE[45], RIGRIIBES TIEM, LAERM— CSV X
, EhESRBNEREEMNRNIRFEINTRIRFR GPS 815 (BE. 2F) FA
A, ERAFARS, RIIBEEENE. BANEMZRLRRNEDBIRE2.01. 1
F10.5, USSHARBAGENSNERERE. B, AEHE (AATEWNKE, B
TANBEE) FEORBAVES BI1F0100. $F L, FEFAAENRE:, 3KZEA44]
R, DGR ERE R B RRIIRBLA T ATUG

[ (8)] * Iy (£)]
ESC allowedy, [Tis (t) N [ﬂ is (t}]

pi].{k) () :{ 5 ifj € allowed, ; 0 otherwise} (1)

EIXE, ofIBoRIREEEMEAIME. nij (1) Mty (1) PBIRRIFMRZERIE
ERTRNMEMNEE. S C allowedk 2B ATLUGENFIA A RERERII—MES. &
BENERETAINME, #MRE T ERBZAOHR. B, EERNERS, <[l
RIZENFERERIT SRS, EFRZREASRBREA,

2.9. AT AN A HE

—BiIRATRIAS B IEH LRI RRE T REN AR MIRFRE Tk, #iE
F8 DroneKit-SITL ({7 FEEINFIfERILMN{BZFITHT 3D Robotics 22F]) Python 344
£, 1Bid Python FIAEIITANBI KITEER, FERNMEEIEHELL (GCS) L#H1TE
52 . Mission Planner k7S 1.3.76 [46] 1 MAVProxy iRZN 1.8.45 [28], {88F8 MAVLink [30,
471 i FERE GCS 1 DroneKit-SITL Z [BF{TEE. XFIEESEEIE FRER ST
W (TCP) fEATEI/RAO, AEEEBHIROZRAEI= APEIERIDMY (UDP) im[O>kKSC
WA, SCHEMNIENSRE FTENEZE | PERESR.

—A Python HIA#AFIEEN— CSV X, ZXHRINFEE T HINEFEIEERR
RIFFET A GPS 44%R, IXLEATRYS N FHEMNRINFERRR VC BYRNUE. &%
ANEFAEIRIINITE, BHDEREEMEER Hylio FFA&RI AgroSol 2.105.0 hiRHEHEI=H
uh HERBRM KITIRRMY CSV X4, AgroSol BGHIRM T = HIE B BT AV IAYE
H. B ¢ PFRREERTR T MNEHREKER ST ATURBIEAN TIERE.



" Algorithm 1 Spot Spray Simulation Algorithm

" Require: CSV file with GPS coordinates of detected VC plants
Ensure: Simulated flight path based on ACO algorithm on Mission Planner GCS
1: Procedure SpotSpraySimulationAlgorithm:

2: Open two terminal windows from Anaconda environment;
3: while paths set to the directory where MAVLink was installed do
if terminal window 1 then

dronekit-sitl copter --home=30.534351,-96.431239,0,180

--model=copter;

end if

mavproxy --master tep:127.0.0.1:5760 --sitl 127.0.0.1:5501

: --out udp:127.0.0.1:14550 --out udp:127.0.0.1:14551 --out

10:  udp:127.0.0.1:14552;

11: end while

12: Open Mission Planner GCS;

13: while mode == guided do do

14:  if UDP port== 14551 then

b e s e T

15: Open Spyder IDE and execute python script “ve spot spray.py”;
16: else

17: end

18:  endif

19: end while

20:end

RGB, Red Edge and ' A
NIR image data M 'mage alignment

collection of fields with and enhancement

com and VC plants

VC: volunteer cotion

Augmentation of

images with com and Gamma cprrgctipn X
Ve for closer view ‘
g RGE bands
v
O PyTorch

Convert pixel-based Extract pixel
coordinates into s -DAased coordinates
GPS coordinates of VC plants -

Save GPS
coordinates in csv file

Simulation of spray Upload the mission
capable UAS with to Agrosol

Mission Planner [ software for spot  [MINEL IS RT®) LI

software spray application

v
Optimal Flight Path
with Ant Colony
Optimization (ACO)

6. —NRiEE, BT RENIEME, ARTFIARPERNEINSE.



.48
3.1. £ YOLOvsSm B9 CcVv EEERFRERMMBEIER LGN E KM
PRI E ZEY

E7ER 7 ) GF1sSIE SRS ERVEIRSE (IoUtRk) FIBERMERENER.
EFORERZRI, FIMREECEIS, 2RIREERIH—SHNE. THEUE
£, FE476RE R ERENSREET0.028, HEHIFREANREEEF0.009, H
MEFE6I3RER. ERIESURE L, $5394K%H Birtt iRk aH{E(E190.0094,
MAERSEHIR(K(EY90.0296, HIMESEI70RIEN,. EEH, TTUEIARBLRSER
BB, ESE320KEMAR, BERRIRAEL0.98, MESS2SRIEAN, BREZERK
FIFEKE0.77, EFREENEmAP@0.50, HEAEH0.81, HIMAEFE61IRIEN.
mAP@0.50{E90.81, RIFEEIEEEIOURENSO%AENIERNREY, XEKEM
MEHFESHELIEEEZED50%,. XMEINRENERE, REEXLEHAHTEE
ERENFIEMEEMR (VC) 8. mERIXRECAS21ET, mAP@0.50:0.9589RKE
#H3k1E, H{E0.33. mAP@0.50:0.95{F790.33, 1R TIEREEARRUEE (M50%E]
95%) THIMBERMEINMEE. XMNMRIEAERE, EAREERBFIERS0%ESH
YIAFEREN, BEEEHRENAENESTEEMEME, HEYaeaTH., XXRHA
ELUBREM S EFEEEEE, B5REXS VOEMSESMNEMMYIIR
(INEXKIBEY. EFMLTE) HHE. BFE-BRZEMLZ (PRC) BRSMERERER
79%, FIDERIRABEEIL40%NEEKETH0.76 (E9A, B) . EI0RRIREE
PERR, YOLOVSmETZEi4k, 8EBLAT8%ANEMRERNSVCIEYIHITHZE, BRT
EXEY. FE. TESESRFINEE, RERH2%. ATHDXERSE, 7
PASCHE—LEikmg. Bk, 1BIMIIGEIRENZ MR/ ARSIRREIFi X 5o
VCEYIFIEMSE AR, XA LUBE S REAF IERKM RN ER ZIRENE
&L, HR, UEEERARWIELE. BIAAGEERET LIRSEENT SRS
TR,

B 0ER TR YOLOVSmIEBIA— L MIZE R, IZIEBIZENVIDIA Tesla
P100 GPU-16GB_ERIFITHEIRIRE H47I0EFY (FPS) . ZIRE SR BELER
FHFTANEZS (E?2) ERINVIDIA Jetson TX2 GPU L, IFFA/NF640 X 6405
NE®G, BAEENFIYERIRE 92.5358) (2904 FPS) (E11) . YOLOvSmiRE!
FENVIDIA Jetson TX2 GPU_ERYIEIRIERE 21Td SO M B rT 1T 4RO E 2=, SCATqk
HEEEEZE/30 FPSHEE, DBRENSIESRE BT mAIERE. MEREAJ0.
4 FPSHURERPEFEEENIER, FEAESEEMENFMMAAES, Hla0st
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Abstract: To effectively combat the re-infestation of boll weevils (Anthonomus grandis L.) in cotton
fields, it is necessary to address the detection of volunteer cotton (VC) plants (Gossypium hirsutum
L.) in rotation crops such as corn (Zea mays L.) and sorghum (Sorghum bicolor L.). The current practice
involves manual field scouting at the field edges, which often leads to the oversight of VC plants
growing in the middle of fields alongside corn and sorghum. As these VC plants reach the pinhead
squaring stage (5-6 leaves), they can become hosts for boll weevil pests. Consequently, it becomes
crucial to detect, locate, and accurately spot-spray these plants with appropriate chemicals. This
paper focuses on the application of YOLOv5m to detect and locate VC plants during the tasseling
(VT) growth stage of cornfields. Our results demonstrate that VC plants can be detected with a
mean average precision (mAP) of 79% at an Intersection over Union (IoU) of 50% and a classification
accuracy of 78% on images sized 1207 x 923 pixels. The average detection inference speed is 47 frames
per second (FPS) on the NVIDIA Tesla P100 GPU-16 GB and 0.4 FPS on the NVIDIA Jetson TX2
GPU, which underscores the relevance and impact of detection speed on the feasibility of real-time
applications. Additionally, we show the application of a customized unmanned aircraft system
(UAS,) for spot-spray applications through simulation based on the developed computer vision (CV)
algorithm. This UAS-based approach enables the near-real-time detection and mitigation of VC
plants in corn fields, with near-real-time defined as approximately 0.02 s per frame on the NVIDIA
Tesla P100 GPU and 2.5 s per frame on the NVIDIA Jetson TX2 GPU, thereby offering an efficient
management solution for controlling boll weevil pests.

Keywords: boll weevil; volunteer cotton (VC); remote sensing; computer vision (CV); YOLOVS5;
unmanned aircraft systems (UASs); spot-spray

1. Introduction

The cotton boll weevil (Anthonomus grandis L.) is an insect pest that has caused more
than USD 23 billion in losses to the U.S. cotton industry since migrating from Mexico in the
1890s [1]. It continues to be a matter of concern for the U.S. cotton industry, particularly
in Texas, even though it has been eradicated from most of the U.S. Therefore, there is a
continued need for the activities of the Texas Boll Weevil Eradication Foundation (TBWEF)
as per the latest report of Sunset Advisory Commission [2]. The TBWEF has divided the
state into 16 eradication zones in which the Lower Rio Grande Valley (LRGV) is still actively
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functioning as it remains the region most prone to boll weevil re-infestation each year due
to its tropical climatic conditions [2] and proximity to the Mexico border. The vulnerability
of the LRGV is due to several factors, one of which includes its subtropical climate with hot
and humid summers and mild to cool winters without freezing conditions, allowing cotton
plants to grow and produce fruit year-round, providing a continuous food source for boll
weevils. Additionally, tropical storms from the Gulf of Mexico commonly carry boll weevils
from Tamaulipas State in Mexico to the LRGV [3]. In 2019 alone, 46,000 boll weevils were
captured by the foundation, indicating the severity of the problem and a continued need
for the functioning of the TBWEF. Without the eradication efforts by TBWEF, boll weevils
would have caused an annual loss of USD 200 million to Texas farmers [4]. Recent reports
indicate that the TBWEF's efforts have significantly reduced the number of boll weevils in
Texas [5]. As per the latest weekly report published by the TBWEEF, the season-long trap
average of boll weevils captured has decreased by approximately 99.91% from the year
2020 to the year 2024 for the Lower Rio Grande Valley [5].

Cotton (Gossypium hirsutum L.) is commonly planted in rotation with crops like corn
(Zea mays L.) and sorghum (Sorghum bicolor L.). In climatic areas like the LRGV, cotton seeds
can survive year-round, and thus, seeds in cotton that might have fallen during the harvest
in the previous year can grow among corn and sorghum plants in the present year [3,6,7].
Such plants are called volunteer cotton (VC) plants, which essentially act as weeds that can
emerge in fields of grain crops like corn, sorghum, soybean, and wheat. The necessity of
removing VC from various crops in the state’s production regions stems from two main
factors: yield loss due to competition and boll weevil control challenges. Volunteer cotton
plants compete with primary crops, reducing yields, with farmers generally aiming for
80-90% control using herbicides. In South and Eastern Texas, where the Texas Boll Weevil
Eradication Program (TBWEP) is active, the presence of volunteer cotton significantly
complicates and increases the cost of boll weevil control as boll weevils use cotton plants
as hosts. Consequently, the Texas Department of Agriculture enforces a zero-tolerance
policy for hostable non-commercial cotton plants (6-8 leaves or larger) in quarantined
zones to prevent infestations. To comply with these regulations and protect crop yields,
farmers must achieve complete control of volunteer cotton through timely and appropriate
herbicide applications.

To minimize the likelihood of boll weevil re-infestation, the TBWEF uses pheromone
traps to detect boll weevils and pesticides to eliminate them. As part of boll weevil
mitigation efforts in the LRGV region, fields with rotation crops are inspected for the
presence of VC plants at the edges of fields on a weekly basis. When VC plants are detected,
the number of pheromone traps increases. In addition to inspecting for the presence of
VC plants, pheromone traps are also inspected for the presence of boll weevils. If at
least one is found at the edge of a field, then the entire field is sprayed with a pesticide,
commonly Malathion (C;19H;9OgPS;) ULV (FYFAN ON® ULV AG) at rates between 0.56 and
1.12 kg/ha [8]. Uniform spraying is utilized because VC plants growing in the middle
of corn and sorghum fields remain undetected and so cannot be sprayed individually.
Spraying entire fields results in both increased management costs and environmental
concerns as well as destroying many beneficial insects.

Uniform spray applications can be avoided if VC plants growing in the middle of
corn and sorghum fields are detected and precisely located so that spot-spray-capable
unmanned aircraft systems (UAS) can be deployed. Detecting VC plants before they reach
the pinhead square stage and precisely spraying them with herbicides can eliminate the
plants and minimize the need for applying Malathion. However, some VC plants may
survive due to herbicide tolerance or inaccuracies in detection, in which case Malathion
application later in the season could be needed. To detect VC plants either early or late in the
growing season, remote sensing with images collected by UASs along with computer vision
(CV) algorithms using state-of-the-art convolution neural network (CNN) architectures
like Mask R-CNN [9], YOLOv3 [3,10,11], YOLOVS5 [12], etc. can be used. Since its release
in 2021, YOLOVS5 has become popular in CV applications and has been used to detect
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various objects like apples [13], face masks [14], safety helmets [15], etc. Due to its higher
detection accuracy and faster inference speed compared to other traditional object detection
algorithms, YOLOvS was selected for this study as the most viable model for near-real-
time detection. Originally YOLOvV5 was released in four different variants: YOLOV5s,
YOLOvV5m, YOLOvV5I and YOLOv5x. However, YOLOv5m was chosen as the desirable
variant based on our previous research [16].

In addition to detecting VC plants, the geographic coordinates of the detected plants
are needed for precise spray application. Therefore, geotagged UAS-based imagery was
used in this study. High-quality RGB (Red, Green, Blue) cameras have commonly been
used for object detection with YOLOv3 and YOLOVS5 [13,14,17]. In most cases, radiometric
correction was not employed. Remote sensing imagery without radiometric correction is
susceptible to varying environmental conditions including illumination, atmospheric light
scattering, sensor noise, etc. [18]. Images that are not radiometrically corrected have digital
numbers (DN) that do not represent actual surface reflectance [19-21]. Hence, radiometric
correction was conducted in this study.

YOLO-series object detection algorithms generate bounding boxes (BBs) around the
objects of interest present in the images. The locations of these BBs are based on their pixel-
wise distances from the top-left corners of images [10,22,23]. Based on the BB coordinates,
central coordinates of each BB can be determined. Pixel-wise coordinates are not useful for
the path planning of spot-spray-capable UASs, so a method of converting pixel-wise BB
coordinates into GPS coordinates is necessary so that they can be used for path planning
for spot-spraying detected VC plants.

UAS flight times are limited by battery capacity, so an optimal flight path is a ne-
cessity to efficiently spray VC plants. Optimal path planning can be conducted based
on the travelling salesman problem (TSP), in which the goal is to determine the short-
est route for the UAS to spot-spray each of the detected VC plants and then return to
the starting point [24,25]. Different algorithms have been tested for this, some of which
include the genetic algorithm used by Moon et al. [26] and Shivgan and Dong [25], ant
colony optimization (ACO) used by Dorigo et al. [27], etc. In this study, ACO was used
because of its simplicity in implementation, feasibility, and faster speed to generate high-
quality solutions [27]. The determined optimal flight path was tested by simulating the
UAS with DroneKit-Software (3.3.0) In The Loop (SITL) (3D Robotics, Berkely, CA, USA),
MAVProxy [28], and Mission Planner (Ardupilot Development Team and Community).
DroneKit-SITL provides an application programming interface (API) to run Python-based
applications on companion computers of UASs whereas MAVProxy and Mission Planner
are ground control station (GCS) software programs to control and simulate UAS applica-
tions [29]. The communication between GCS and UASs is achieved through a binary serial
telemetry protocol called MAVLink [30].

The overall goal of this research was to develop a CV algorithm for detecting VC plants
in a corn field and use the detected locations for optimal spot-spray applications. The four
specific objectives were (i) to develop a computer vision (CV) algorithm with YOLOv5m to
detect VC plants in a corn field with radiometrically (reflectance calibrated) and gamma-
corrected, relatively low-resolution (1.2 Megapixel), multispectral aerial imagery; (ii) to
convert the pixel-based bounding box coordinates of detected VC plants into geographic
coordinates; (iii) to use the detected geographic coordinates of VC plants to generate
an optimal flight path with the ACO algorithm; and (iv) to simulate a spot-spray UAS
with DroneKit-SITL and the MAVProxy and Mission Planner GCS software based on the
generated optimal flight path.

2. Materials and Methods
2.1. Experiment Site

This study was conducted at a corn field (Figure 1; 96°25'45.9"W, 30°32/07.4"N) of
roughly 5.9 hectares (14.6 acres) at the Texas A&M AgriLife Research farm near College
Station, Texas. The majority of the soil in the experimental plot is Weswood silty clay loam,
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AG, Leverkusen, North Rhine-Westphalia, Germany) were planted at randomized locations
among the corn plants to mimic the presence of VC plants in the field. Some were planted
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Figure 1. Experiment field located at Texas A&M University farm near College Station, TX in Burleson
County (96°25'45.9""W, 30°32/07.4"N) where cotton plants were planted in the middle of corn field to
mimic the presence of volunteer cotton plants.

2.2. Image Data Acquisition

A five-band (Blue, Green, Red, Near-Infrared, RedEdge) multispectral camera—Red-
Edge-MX (AgEagle Aerial Systems Inc., d/b/a MicaSense, Wichita, Kansas; Figure 2)—was
mounted on a customized UAS (Figure 2) for collecting aerial imagery of the corn field
with cotton plants when the corn plants had reached tassel vegetation stage (VT) (Figure 3).
The reason for choosing this camera instead of conventional RGB camera was because its
images are geotagged and can be used for other advanced image processing techniques like
radiometric correction using open-source code provided by the manufacturer; moreover, it
gave the flexibility to use other bands like NIR and RedEdge when required. The central
wavelength and bandwidth of each spectral band are shown in Table 1. The images were
acquired at this growth stage of corn plants because we wanted to test the worst-case
scenario in which corn canopies are relatively larger and taller than those of VC plants.
This was shown by another study in which the lowest detection accuracy was for corn
fields when they had reached the VT growth stage [7]. The UAS (Hylio AG-110; Hylio
Inc., Richmond, TX, USA) was originally designed for broadcast spray applications. Data
were collected on 14 May 2021 between 11:00 a.m. and 2:00 p.m. central daylight-saving
time (CDT) at an altitude of nearly 4.6 m (15 feet) above ground level by using auto
exposure camera setting. This resulted in an approximate ground sampling distance (GSD)
of 0.34 cm/pixel. This altitude was chosen for two main reasons: one was for higher image
resolution and GSD while the other was so that efficient spot-spray application could be
performed from this altitude without causing too much of drift in the spray droplets. Since
the customized UAS was not designed for aerial surveying, there was no software interface
available to capture images based on overlap settings. Therefore, images were captured



Remote Sens. 2024, 16, 2754 50f22

on a timer-based setting enabling an image to be captured every second. This resulted in
many unused and distorted images due to unavailability of overlap settings and vibrations
caused due to the design aspect of the sprayer UAS (generally, spray-capable UASs have
more vibrations as compared to surveying UASs). The UAS had a payload capacity of
10 kg/L. The UAS was flown at a speed of 2 m per second.

On-board computing platform
(NVIDIA Jetson TX2)

Figure 2. A customized sprayer UAS (broadcast sprayer converted to spot sprayer) with RedEdge-MX
multispectral camera for capturing aerial imagery and NVIDIA Jetson TX2 computing platform [7].

Figure 3. (A) The customized spot-sprayer UAS flying over an experimental corn field (containing
some cotton plants planted to mimic as volunteer cotton (VC) plants) capturing five band multispec-
tral images; (B) RGB (Red, Green Blue) composite image showing a section of experimental plot
where corn at vegetative tassel state (VT) and some cotton plants mimicking as VC plants can be seen.

Table 1. Center wavelength and full width at half-maximum (FWHM) bandwidth of each spectral
band of MicaSense RedEdge-MX camera.

Spectral Band Central Wavelength (nm) FWHM Bandwidth (nm)
Blue 475 20
Green 560 20
Red 668 10
NIR 840 40

RedEdge 717 10
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An onboard computing platform, the Jetson TX2 (NVIDIA Corporation, Santa Clara,
CA, USA) development board that consists of a Pascal graphics processing unit (GPU), was
mounted on the customized UAS with the intent of near-real-time detection of VC plants
in corn fields (Figure 2). The Pascal GPU is low-cost, fast, and widely used as an embedded
artificial intelligence computing device. It consists of 256 NVIDIA Compute Unified Device
Architecture (CUDA; NVIDIA, Santa Clara, CA, USA) cores with 8 GB of RAM and 32 GB
of storage capacity [32].

2.3. Manufacturer Recommended Corrections

The individual band images collected by RedEdge-MX camera were corrected based on
manufacturer’s recommendations [33] using the reflectance panel of type RP 04 (Figure 4)
images taken on the day of data collection just before the flight.

Figure 4. Reflectance panel of type RP 04 image with blue band sensor of RedEdge-MX camera taken
on the day of flight.

According to the manufacturer’s factory calibration (in which absolute reflectance
values were plotted along wavelengths ranging from 400 nm to 850 nm), the reflectance
values corresponding to blue, green, red, NIR, and RedEdge were 0.60, 0.61, 0.61, 0.60,
and 0.56, respectively, for the panel that was used in the study. As per the manufacturer’s
process, an area of the Lambertian panel from reflectance panel image was extracted and
its radiance value was converted to the scale of reflectance value, which was then applied
to the whole image to convert it into reflectance images. Source codes for both radiometric
and gamma corrections were used from the GitHub (GitHub, Inc., San Francisco, CA,
USA) repository of MicaSense [33]. The original source code was modified based on the
reflectance values for the panel used and for generating RGB aligned images for each cap-
tured image from the field data collection as seen in Figure 3. RGB images were generated
because YOLOvV5 network architecture accepts input images with three channels (usually
RGB images). Python version 3.8.12 (Python Software Foundation, Wilmington, DE, USA)
was used in Spyder integrated development environment (IDE) version 5.2.2. The entire
process involves normalizing images by gain and exposure settings and then converting
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them into radiance followed by reflectance. The gain and exposure settings were used
to normalize the raw image data, correcting for differences in exposure time and sensor
sensitivity and allowing for accurate conversion to radiance values. The normalization
of images by exposure and gain settings is crucial for converting raw images to radiance.
Exposure time, representing the duration the camera sensor is exposed to light, and gain,
derived from the ISO setting, are obtained from the image metadata. The raw image
undergoes correction to account for dark pixel offset, vignette effects, and row gradient
inaccuracies. Following this, the corrected image is normalized using the exposure time
and gain, ensuring consistency across different images. This normalized image data is then
converted to radiance units (W/m?/nm/sr) by scaling it with the gain-exposure product
and applying the radiometric calibration coefficient, adjusted for the image bit depth. This
process ensures accurate and comparable radiance values essential for reliable reflectance
mapping. After this, in the study, unsharp mask (an image sharpening technique) was
applied as enhancement technique to improve visual sharpness, and then, gamma correc-
tion was applied to make the enhanced images appear brighter and visually closer to what
our eyes see [33]. For these, the original values present in the GitHub source code were
used. The unsharp mask technique uses linear filter to add a fraction of high-pass-filtered
input image to the original image that helps sharpen the original image by filtering out the
noise [34]. Similarly, gamma correction is an image enhancement technique that is used
to minimize the effect of non-linearity of the imaging sensors, thereby making the images
appear brighter with enhanced contrast and visually closer [35-37].

2.4. YOLOv5

Since its release in June of 2020, YOLOV5 [38] has become a popular algorithm for
object detection in CV applications. YOLOv5 was originally released in four different
variants, YOLOv5s, YOLOv5m, YOLOVS5], and YOLOv5x, with the subscript based on
the network depth and number of parameters used. Here, s, m, [, and x represent small,
medium, large, and extra-large variants of the YOLOv5 network, respectively. The YOLOv5
network comes with pretrained weights from training on the Common Objects in Context
(COCO) [39] dataset, which consists of 80 different classes, such that YOLOVS5 is pretrained
to detect 80 different classes. In this study, the network was customized to detect a single
class, “vc”, for VC plants. The architecture of YOLOvV5 comprises three main components:
the Backbone, the Neck/PANet, and the Head/Output (Figure 5). The Backbone is a
convolutional neural network (CNN) responsible for aggregating fine-grained images. The
Neck consists of feature aggregation layers that combine features to construct the feature
pyramid network. These generated feature maps are then passed on to the Head or Output
network. The Output network handles the final detection phase of the model. It applies
anchor boxes to the feature map obtained from the previous layer and produces a vector
containing the category probability of the target object, the object score, and the position of
the bounding box that surrounds the object [40].

2.5. Image Data Preparation

Among the radiometrically and gamma-corrected RGB images, only the ones con-
taining at least a VC plant with corn in the background were chosen and then image aug-
mentation was applied using Augmenter Python library [41]. For this, rotate, flip_left_right,
zoom_random, and flip_top_bottom were used with probability values of 0.80, 0.40, 0.60,
and 0.80, respectively. These values were chosen so that each time an image was passed
through the augmentation pipeline, 80% of the time, rotate operation was applied; 40% of
the time, flip_left_right was applied; 60% of the time, zoom_random was applied; and 80% of
the time, flip_top_bottom was applied. In this way, we were able to generate a total of
521 RGB images from a total of 34 original images (containing at least one VC plant) that
were radiometrically and gamma-corrected, and each of them were of the original size,
1207 x 923 pixels. Out of these, 417 images (80%) were used for training, 77 (15%) were
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used for validation, and 27 (5%) were used for testing. The percentages of data split were
chosen arbitrarily.

Neck/PANet Head/Output

> Concat |

Concat

Conv 1x1

Concal

UpSample

Conv 1x1

Cony3x3 52

Y

Concat

Figure 5. General overview of YOLOvV5 network architecture.

2.6. YOLOv5 Training

The YOLOvV5m source code was obtained from the GitHub repository of Ultralytics
Inc. [12]. The PyTorch framework (Facebook AI Research Lab, Melno Park, CA, USA)
with torch version 1.10.0 and Compute Unified Device Architecture (CUDA) version 11.1.0
(NVIDIA, Santa Clara, CA, USA) were used to train the YOLOv5m model on Tesla P100-
PCIE-16 GB (NVIDIA, Santa Clara, CA, USA) GPU using the Google Colab (Google LLC,
Melno Park, CA, USA) Al platform. The model was trained with the original hyperparame-
ter values with initial learning rate of 0.01, final learning rate of 0.1, momentum of 0.937,
weight decay of 0.0005, and intersection over union (IoU) threshold of 0.50 for a total of
621 iterations. This essentially implied that YOLOv5m had reached the convergence within
the 621 iterations.

2.7. Bounding Box Coordinate Conversion

The first step involved in this process was to extract the top-left-corner coordinates
from the geotagged images of RedEdge-MX camera during the processes of radiometric
and gamma corrections, image enhancement, and RGB band alignments by modifying
the original Python script obtained from the GitHub repository of MicaSense [33]. The
extracted GPS coordinates of each geotagged image were stored in a comma-separated
variable (CSV) file. The YOLOV5 detect.py Python script was modified to extract central
coordinates of each detected bounding box, which were stored in a separate CSV file.
Another Python script was developed to utilize both the CSV files and then convert the
pixel-wise BB of the detected VC plants into GPS coordinates. In the Python script, GSD
was first converted into meter/pixel format and the decimal coordinates were converted
into Universal Transverse Mercator (UTM) format, from which northing and easting values
were extracted, and then, pixel-based central coordinates were converted into UTM-based
GPS coordinates using UTM zone of 14 during the conversion process [42].

Potential sources of error in this conversion process included inaccuracies in the initial
geotagging of images, variations in GSD, and the precision of the UTM conversion. The
accuracy of the detected bounding box coordinates was also influenced by the performance
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of the YOLOv5 model, which may have had a margin of error in object detection. Addi-
tionally, any slight misalignments or distortions in the image processing steps could have
propagated through to the final GPS coordinates. It was crucial to consider these factors
and apply appropriate error correction and validation steps to ensure the reliability of the
GPS coordinates derived from pixel-wise bounding boxes.

2.8. Optimal Flight Path with ACO Algorithm

ACO algorithm is state-of-the-art algorithm for many problems like vehicle routing,
open-shop scheduling, and sequential ordering problems [27]. It is based on the fact that
when ants move along a path from their colony to a food source, they deposit pheromones
that evaporate over time. This means ants travelling through longer paths have less intense
pheromone deposits, but the pheromone intensity is much higher along the shortest path.
In our used case application, VC plant locations were the food source that the artificial
ants would find through the shortest possible route. In many past cases, ACO has proven
to be widely accepted algorithm for determining optimal flight paths for UASs [43,44].
Source code to implement ACO was used from the GitHub repository of fabien-brulport [45].
The original source code was modified to generate a CSV file containing GPS coordinates
(latitude, longitude) in the order of nodes generated for the optimal route as the output from
the ACO algorithm. In our study, we set the values of pheromone weight, heuristic weight,
and evaporation rate as 2.01, 1, and 0.5, respectively, to achieve the shortest distance after
trying with different combinations of values. Similarly, the values for number of agents,
i.e,, number of artificial ants (i.e., equivalence of number of UASs), and number of iterations
were 1 and 100, respectively. Mathematically, at any given time f, the probability that ant k
choses a path from i to j, as explained by Zhang et al. [44], is given by the following formula:

(O] % (6)] P
Py (k) (t) :{ (1) [Th](to)c] B ifj € allowedy ; 0 otherwise} (1)
ZSCallowedk [Tis (t)] [T]is (t)]

Here, « and 3 are pheromone and heuristic weights, respectively. nj (t) and Ty (t) are
visibility and quantity of pheromone between points i and j. S C allowedy is a set of all the
possible points in a path that the ant can choose from. The pheromone amount determines
the visibility, which, in turn, determines the probability of choosing a path. Therefore,
higher pheromone quantity increases the visibility of a particular path between points i
and j and, hence, the probability of choosing the path increases.

2.9. Spot-Spray UAS Simulation

Once the geographic coordinates were saved in optimal order corresponding to nodes
obtained from ACO, the DroneKit-SITL (3D Robotics, Berkeley, CA, USA) Python pack-
age was used to simulate flight paths of UAS with a Python script and monitored on
two ground control stations (GCSs): Mission Planner version 1.3.76 [46] and MAVProxy
version 1.8.45 [28]. The MAVLink [30,47] protocol was used to communicate between the
two GCSs and DroneKit-SITL. This communication was accomplished by using transmis-
sion control protocol (TCP) for the master port and then port-forwarding the output to
three user datagram protocol (UDP) ports. The steps used to implement the entire process
are represented in Algorithm 1 as shown in below.

A Python script was used to read a CSV file that contained GPS coordinates of all
the nodes in order, generated by the ACO algorithm, which corresponded to the locations
of the detected VC plants for spot-spraying. After the UAS simulation was performed
successfully, we were also able to upload the CSV file with optimal flight paths on AgroSol
version 2.105.0 GCS, developed by Hylio (Hylio, Inc., Richmond, TX, USA). The AgroSol
software provided interface to control the spot-spray UAS that was customized. The
flowchart in Figure 6 shows the entire workflow starting from data collection to spot-spray
UAS simulation.
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Algorithm 1 Spot Spray Simulation Algorithm

Require: CSV file with GPS coordinates of detected VC plants
Ensure: Simulated flight path based on ACO algorithm on Mission Planner GCS

1: Procedure SpotSpraySimulationAlgorithm:

2: Open two terminal windows from Anaconda environment;
3: while paths set to the directory where MAVLink was installed do
if terminal window 1 then

dronekit-sitl copter --home=30.534351,-96.431239,0,180
--model=copter;

end if

mavproxy --master tcp:127.0.0.1:5760 --sitl 127.0.0.1:5501
--out udp:127.0.0.1:14550 --out udp:127.0.0.1:14551 --out
10:  udp:127.0.0.1:14552;

11: end while

12: Open Mission Planner GCS;

13: while mode == guided do do

14:  if UDP port == 14551 then

15: Open Spyder IDE and execute python script “vc spot spray.py”;
16:  else

17: end

18:  endif

19: end while

20:end

RGE, Red Edge and !
MIR image data Image alignment

collection of fields with and enhancement
com and VC plants

VC: volunteer cotlon

Augmentation of
images with corn and

Ve ; ‘ RGE bands
Annotations on 521 : | Colab Pro
images with corn and VC :
O PyTorch

Convert pixel-based Extract pixel
coordinates into s -Dased coordinates
GPS coordinates of VC plants

Save GPS
coordinates in csv file

: _ Simulation of spray Upload the mission
Dpt_ltr:i: Fthcgh: Path capable UAS with to Agrosol
I s S olofy Mission Planner ' software for spot
Optimization (ACO) AGR@SO Ll

software spray application

Figure 6. A flowchart that shows complete workflow representing each step used in this study.
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3. Results
3.1. CV Algorithm with YOLOuv5m for Detecting VC Plants in a Corn Field on Radiometrically
Corrected Aerial Imagery

Figure 7 shows graphs for box loss (IoU loss) and objectness loss on both training
and validation datasets. Before the 600th iteration, both the losses had converged, and no
improvement was seen beyond. The lowest value of box loss was found to be 0.028 at the
476th iteration while the lowest value for objectness loss, i.e., 0.009, was found at iteration
number 613 on the training dataset. On the validation dataset, the lowest value of objectness
loss was found to be 0.0094 at the 394th iteration. Similarly, the lowest value of box loss on
the validation dataset was found to be 0.0296 at iteration number 370. In Figure 8, graphs
of different performance metrices can be seen. It was found that the maximum value of
precision reached around 0.98 at the 320th iteration while the maximum value for recall
was found to be 0.77 at the 525th iteration. The most important metric out of all of these
was mAP@0.50, whose maximum value, i.e., 0.81, was reached at iteration number 613.
The mAP@0.50 value of 0.81 indicates that the model performs well when considering
detections with an Intersection over Union (IoU) threshold of 50%, meaning the predicted
bounding boxes overlap with the ground truth by at least 50%. This relatively high value
suggests that the model can accurately detect and localize volunteer cotton (VC) plants
under these conditions. At iteration number 521, the maximum value for mAP@0.50:0.95
was obtained, and this was found to be 0.33. The mAP@0.50:0.95 value of 0.33 highlights a
more nuanced picture of the model’s performance across a range of IoU thresholds (from
50% to 95%). This lower value suggests that while the model is effective at identifying and
localizing objects at a 50% overlap, its performance decreases as the required overlap for a
correct detection becomes more challenging. This indicates potential challenges in achieving
precise localization, particularly in distinguishing VC plants from the background and other
objects like corn plants, weeds, and soil. The precision-recall curve (PRC) resulted in an
overall accuracy of nearly 79% and the maximum value of Fl-score was found to be 0.76 at
nearly the 40% confidence level (Figure 9A,B). The confusion matrix in Figure 10 shows
that YOLOv5m was trained enough to classify VC plants with an accuracy of 78% and loss
of 22% owing to the background class of corn plants, weeds, soil, etc. To mitigate these
misclassifications, several strategies can be implemented. First, increasing the diversity
and size of the training dataset can help the model better distinguish between VC plants
and other similar objects. This can be achieved by collecting more annotated images under
various lighting conditions and growth stages. Second, data augmentation techniques such
as rotation, scaling, and color adjustments can improve the model’s robustness to variations
in the field environment.

Figure 10 shows some detection results from the trained YOLOv5m model that resulted
in an average inference speed of 47 frames per second (FPS) on NVIDIA Tesla P100 GPU-
16GB. This model was later deployed on the NVIDIA Jetson TX2 GPU that was mounted
on the custom UAS (Figure 2) and resulted in an adjusted average inference speed of
2.535 s (~0.4 FPS) for images of size 640 x 640 pixels (Figure 11). The inference speed of
the YOLOv5m model on the NVIDIA Jetson TX2 GPU is a critical factor for assessing the
feasibility of real-time applications. Real-time processing typically requires a minimum
speed of 30 FPS to ensure smooth and responsive performance in dynamic environments.
The observed speed of 0.4 FPS indicates a significant lag, making it unsuitable for scenarios
where immediate detection and response are necessary such as in real-time monitoring and
intervention in agricultural fields. This low inference speed can be attributed to multiple
reasons. One possible reason could be the settings of the GPU hardware on the Jetson TX2
board, which could not utilize its maximum computing power.
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Figure 9. (A) Precision-recall plot, (B) F1-score vs confidence score plot, and (C) confusion matrix
obtained after training YOLOv5m.

Figure 10. VC plants detected in the middle of a corn field within the red bounding boxes (BBs)
by trained YOLOv5m model. The values associated with each BB show model’s certainty that the
bounding box contains an object of interest, i.e., VC plant.
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Figure 11. YOLOv5m detection of VC plants in a corn field by being deployed on NVIDIA Jetson
TX2 mounted on a custom spot-spray-capable UAS.

3.2. ACO Algorithm to Determine Optimal Flight Path for Spot-Spray Applications

Ten random locations of VC plants in the experimental plot were chosen whose
corresponding GPS coordinates can be seen on the left side of Table 2. The selection
of ten random locations for volunteer cotton (VC) plants in the experimental plot was
guided by the need to simulate realistic field conditions while ensuring the feasibility of
spot-spraying in a single flight of the unmanned aerial system (UAS). These locations
were chosen arbitrarily to cover a diverse range of the plot, ensuring that the UAS could
efficiently manage the entire area in one flight. The criterion for selecting these locations
involved ensuring that all chosen spots were accessible and could be covered within the
operational constraints of the UAS such as its flight time and battery life. Each location
consisted of multiple VC plants (since, at each location, multiple cotton seeds were planted);
however, only one plant’s GPS location was considered. This represented mimicking a
real-world scenario in which VC plants usually grow in groups and where, by considering
the location of one plant from each group, the entire spot consisting of the group of VC
plants can be sprayed.

Table 2. GPS coordinates of randomly chosen locations of ten VC plants in experimental plot (left)
and the ordered coordinates/nodes after the application of ACO algorithm (right).

VvC Latitudes Longitudes Nodes Latitudes Longitudes
1 30.5343 —96.4312 1. 30.53687 —96.4284
2 30.53431 —96.4301 2. 30.5359 —96.4283
3 30.53492 —96.4303 3. 30.53321 —96.4298
4 30.53386 —96.4299 4. 30.53386 —96.4299
5. 30.53531 —96.4289 5. 30.53431 —96.4301
6 30.53484 —96.4299 6. 30.53492 —96.4303
7 30.53687 —96.4284 ACO 7. 30.5343 —96.4312
8 30.53537 —96.4289 8. 30.53484 —96.4299
9 30.5359 —96.4283 9. 30.53537 —96.4289
10. 30.53321 —96.4298 10. 30.53531 —96.4289

11. 30.53687 —96.4284
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In this case, the first location was also considered to be the home location of the
spot-spray UAS at which the flight began and ended. The right side of Table 2 shows
the generated nodes in the order determined by the ACO algorithm. Nodes 1 and 11
represented the same location from which the flight began and at which it ended. The
optimal path generated for spot-spray application can be seen on webpage-based output
(Figure 12) that was generated by the Streamlit Python package (Streamlit Inc., San Francisco,
CA, USA). The bottom graph shows the number of iterations on the x-axis and the optimal
distance covered on the y-axis (in kilometers). The total distance covered by the spot-spray-
capable UAS along the generated path was found to be 674.17 m (0.67 km/0.42 m).

Volunteer Cotton Spot-Spray
Optimal Flight Path

D

flight path in meters

Figure 12. Optimal flight path generated by ACO algorithms and output shown by Streamlit Python
package on a webpage.

3.3. Spot-Spray UAS Simulation on Mavproxy and Mission Planner Based on the Optimal Flight
Path Generated by ACO Algorithm

Once the optimal flight path was obtained (Table 2) by the ACO algorithm, the
DroneKit-SITL was used to simulate the spot-spray UAS by following the steps described
under the section on spot-spray UAS simulation on both GCS-MAVProxy and Mission
Planner as shown in Figure 13A-C.
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Figure 13. Spot-spray UAS simulation on MAVProxy (A,B) and Mission Planner (C) GCS. Image A
shows the simulated UAS flying from node 1 to 2 while image B shows it flying from node 4 to 5.
Image C shows the simulated UAS flying from node 8 to 9.

3.4. Spot-Spray Mission on Agrosol GCS

The AgroSol (Hylio Inc., Richmond, TX, USA) GCS software allows one to upload the
CSYV file containing GPS coordinates of nodes generated by the ACO algorithm, and then,
different settings for spot-spray applications can be used for real-life spray applications
(Figure 14). Once the CSV file containing the spot locations was uploaded in this study,
AgroSol generated a spot group as seen on the left side of Figure 14. It then allowed us to
fill in the values for different parameters like the spray altitude, spray volume, etc. The
spray mission could be uploaded to the UAS flight controller, and then, the UAS could go
to each of the spot locations and precisely spot-spray at each of them.
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Figure 14. Spot-spray nodes generated by Agrosol software (2.87.5) after uploading the CSV file
containing nodes generated by ACO algorithm.

4. Discussion
4.1. VC Detection with YOLOv5m

The potential application of multispectral remote sensing imagery for VC detection
in other crops was mentioned by Zhang et al. [48] when they were developing methods
of discriminating cotton plants from other crops based on spectral reflectance properties.
Similarly, in our previous study [49], we were able to show that UAS-based multispectral
remote sensing imagery can be used to detect VC plants growing in corn fields. In another
study by Westbrook et al. [50], the authors were able to detect early-growth-stage VC plants
with aerial remote sensing RGB imagery. The study reported in this paper took motivation
and recommendations from all the previous studies as it made use of multispectral remote
sensing imagery collected by a UAS. However, the difference lay in the use of a CV
algorithm as opposed to conventional image processing techniques like discriminant and
principal component analysis (PCA), maximum likelihood classification, linear spectral
unmixing, etc. In the study conducted by Zhang et al. [48], they were able to discriminate
cotton plants from other crops like corn, soybean, and sorghum with 100% accuracy;
however, the method used a handheld spectroradiometer or the ones mounted on a tractor
very close to crop canopies. This means that their method was limited by two major factors:
the first one was that it could not be applied to larger areas of field and the second one was
that it was a time-consuming process that was not suitable for the near-real-time detection
of VC plants. Our previous study [49] used remote sensing multispectral imagery and some
classical machine learning techniques to make the process of VC detection semi-automatic;
it, however, could not produce a classification accuracy greater than 70%.

In this study, we were able to develop a CV algorithm with YOLOv5m to detect
VC plants (before the pinhead square growth stage) growing in a corn field at the tassel
(VT) growth stage using multispectral remote sensing imagery. In another study [3], we
were able to detect VC plants with more than 90% accuracy in an early-growth corn field
(V3 vegetative growth stage) with uncalibrated RGB imagery. YOLOv3 was used, which
resulted in a nearly 29% higher classification accuracy than the previous approach [49], but
the trained model was less robust to illumination conditions and environmental factors
as the images were not radiometrically corrected. Moreover, the relative height difference
between VC and corn plants was less compared to that in the study reported in this paper.
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In our current and latest approach, reported herein, we were able to develop a CV
algorithm based on YOLOv5m, which was more robust to illumination conditions and
environmental factors as it was trained on radiometrically corrected imagery [51]. By
training the YOLOv5m model on radiometrically corrected imagery, we were able to
generate a more reliable model because it was trained on more accurate data [21]. With
the current approach, we were able to classify VC plants at 11.43% higher accuracy than
the previous method [49] as seen in Figure 10. It is also noteworthy that similar detection
accuracy was obtained in a corn field when the plants were at the VT stage unlike the
V3 stage reported in the other study [3]. YOLOV5 offers several advantages over its
predecessors and other detection models such as Faster R-CNN, EfficientDet, and SSD
(Single Shot MultiBox Detector) that have their own strengths and weaknesses. Faster
R-CNN is known for its high accuracy, but it often comes at the cost of slower inference
speeds, making it less suitable for real-time applications. EfficientDet balances accuracy and
speed effectively, but it requires extensive hyperparameter tuning and larger computational
resources. SSD offers good speed but generally lags in accuracy compared to YOLOV5.

The overarching goal of this study was to speed up the management aspect of the
Texas Boll Weevil Eradication Program (TBWEP) by simultaneously reducing the chemical
costs. Therefore, apart from developing a system for the near-real-time detection of VC
plants, it is also required to develop a detection algorithm that results in minimal false
negatives (i.e., maximum recall). This way, we can minimize the possibility of missing VC
plants in the middle of corn fields that can potentially act as hosts for boll weevil pests. In
other words, for our used case scenario, our algorithm can be tolerant to false positives
but not to false negatives as the damages incurred by boll weevil pests are much more
than the extra costs incurred due to spraying some undesired locations because of false
positives. For this reason, the model obtained at the 525th iteration can be used (Figure 8).
However, if high precision is required (like in the case of saving chemical costs), then the
model trained at iteration 322 can be used, resulting in a precision as high as 98% (Figure 8).
To quantitatively analyze the trade-offs between precision and recall, we examined the
performance of the YOLOv5m model at different iterations. The model at the 525th iteration
demonstrated a maximum recall of 0.77, which was critical for minimizing the possibility
of missing any VC plants. This high recall value indicates that the model could detect
most of the VC plants, thus preventing potential boll weevil infestations. However, this
came at the cost of a lower precision, meaning there were more false positives. In our
context, this trade-off is acceptable as the primary objective is to ensure no VC plants
are missed. The overall performance of the model is represented by mAP@50, whose
maximum value was found to be 81% at the 613th iteration (Figure 8). The performance of
the trained model can be improved by adjusting the confidence threshold value mentioned
by Yan et al. [40]. Apart from these, we had generated 521 images from a limited number of
datasets, i.e., 34 images, by using image augmentation techniques. In this way, the trained
model reported in this study can be regarded as relatively more generalizable [52]. While
image augmentation techniques can enhance the diversity of a training set, they may not
fully capture the variability present in real-world scenarios such as that due to different
lighting conditions, plant growth stages, and environmental backgrounds. To improve
the generalizability of the model, several strategies can be implemented, one of which
is increasing the size and diversity of the training dataset by collecting more annotated
images from various field conditions and growth stages, which can help the model learn
more robust and generalizable features.

4.2. ACO Algorithm for Optimal Flight Path and Spot-Spray

UAS flight parameters such as aerial speed, flight altitude, yaw angle, etc. were
assumed to be fixed and the optimal path generated, shown in Figure 12, was based on
equal weights assigned to both pheromones and heuristic parameters. These assumptions
were like the ones made by Ma et al. [53]. The only constraint used in our implementation
was the distance between two GPS locations. However, in other studies, parameters like the
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yaw angle were used as some of the constraints [44]. The ACO algorithm being stochastic
in nature generates sufficiently good solutions based on randomly generated variables but
no globally optimal solution [54]. Therefore, the optimal path shown in Figure 14 may not
be the global optimal solution but simply one based on the randomly generated variables
used in our study. The parameter values used for the ACO in this study may not be the best
ones but were tested with reasonable combinations. From past studies, it was found that
ACO is highly sensitive to the evaporation rate, which is considered to be the equivalent
of the learning rate; therefore choosing the right value of this parameter is crucial [55,56].
Ojha et al. [55] found that the performance of ACO decreased beyond the 0.5 value for the
evaporation rate. Hence, we chose to use 0.5 as the evaporation rate in our case (Figure 12).
A total of 11 nodes were generated from the 10 VC plant locations, as seen in Table 2—Ileft
and 2—right. Nodes 1 and 11 represent the same location from which the UAS began and
ended its journey traversing through the optimal path generated (Figures 12-14).

5. Conclusions and Future Work
5.1. Conclusions

This paper has presented our findings on the successful application of a CV algorithm
based on YOLOV5m for the detection of VC plants in a corn field during the tassel growth
stage using UAS remote sensing multispectral imagery. Our approach showcased im-
proved classification and detection accuracies compared to previous methods. Additionally,
we demonstrated that a low-resolution imaging sensor, coupled with preprocessing algo-
rithms such as radiometric and gamma corrections, can effectively detect VC plants while
maintaining robustness against variations in illumination and environmental conditions.

Furthermore, we showcased the practicality of the trained YOLOV5m model for near-
real-time detection by deploying it on a computing platform mounted on a sprayer UAS. This
implementation enabled the detection of VC plants in full-scale images (1207 x 923 pixels)
at an adjusted average inference speed of approximately 0.4 FPS on a Pascal GPU of the
Jetson TX2 development board from NVIDIA.

Moreover, we successfully converted the pixel-wise bounding box central coordinates
of the detected VC plants into GPS coordinates. This allowed us to generate optimal
flight paths using the ACO algorithm for simulating spot-spray applications. Overall,
our research has led to the development of a CV algorithm capable of near-real-time VC
plant detection in corn fields along with spot-spray applications utilizing a customized
spray-capable UAS. Through this work, we have created a system with the potential to
expedite TBWEP mitigation efforts possibly at a reduced management cost.

5.2. Limitations and Future Work

We encountered several limitations in our study. Firstly, we only had 34 original
images that contained VC plants. To address this issue, we applied image augmentation
techniques to the entire set of original images. Although this approach could potentially
lead to data leakage, Saulo Barreto [57] has shown that it can still be used effectively in
cases with limited data. Another limitation was observed in our study regarding the slow
inference speed of VC detection when deploying the trained YOLOv5m model on the Jetson
TX2 platform. This limitation can be mitigated by configuring the hardware appropriately
and deploying a lighter version of YOLOVS for real-time applications. Lastly, the simulation
results of spot-spray applications were not validated under field conditions. Therefore, our
future work will involve conducting field tests to validate the simulated results.

Author Contributions: Conceptualization, PK.Y. and J.A.T.; methodology, PK.Y. and J.A.T.; software,
PK.Y,; validation, PK.Y. and ]J.A.T.; formal analysis, PK.Y. and ].A.T.; investigation, PK.Y., ].A.T., R H.,
S.W.S,, U.B.-N,, S.C.P, R.R.III and D.E.M.; resources, ].A.T., R.H. and J.E.; data curation, PK.Y. and
J.A.T,; writing—original draft preparation, PK.Y.; writing—review and editing, PX.Y., ].A.T.,, R H,,
SWS., UB.-N,, S.C.P, RRII, D.EM. and J.E.; visualization, PK.Y. and ]J.A.T; supervision, ].A.T. and
R.H.; project administration, J.A.T. and R.H.; funding acquisition, J.A.T. All authors have read and
agreed to the published version of the manuscript.



Remote Sens. 2024, 16, 2754 20 of 22

Funding: This research was funded and supported by the United States Department of Agriculture’s
Animal and Plant Health Inspection Service (APHIS) Cooperative Agreement# AP20PPQS&T00C046.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: All data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: Sincere thanks are extended to the farm manager (Stephen P. Labar), the student
assistants (Roy Graves, Madison Hodges, Sam Pyka, Reese Rusk, Raul Sebastian, JT Womack, John
Marshall, Katelyn Meszaros, Lane Fisher, and Reagan Smith) involved during the field work, and all
the unanimous reviewers whose feedback helped improve the quality of this paper. We would also
like to thank USDA-APHIS for supporting this project.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References

1. Harden, G.H. Texas Boll Weevil Eradication Foundation Cooperative Agreement; United States Department of Agriculture: Washington,
DC, USA, 2018.

2. Roming, R,; Leonard, A.; Seagraves, A.; Miguel, S.S.; Jones, E.; Ogle, S. Sunset Staff Reports with Final Results. 2021. Available
online: www.sunset.texas.gov (accessed on 23 July 2024).

3. Yadav, PK.; Thomasson, J.A.; Hardin, R.; Searcy, SW.; Braga-Neto, U.; Popescu, S.C.; Martin, D.E.; Rodriguez, R.; Meza,
K.; Enciso, J.; et al. Detecting volunteer cotton plants in a corn field with deep learning on UAV remote-sensing imagery.
Comput. Electron. Agric. 2023, 204, 107551. [CrossRef]

4. Wayne, R. Texas Department of Agriculture Commissioner Sid Miller. Texas Department of Agriculture. Available online:
https:/ /www.texasagriculture.gov/News-Events/ Article /3021 /Commissioner-Miller- Announces-Successes-for-Boll-Weevil-
Eradication-in-Texas (accessed on 18 June 2024).

5. Texas Boll Weevil Eradication Foundation, Inc. Weekly Report. 2024. Available online: https://www.txbollweevil.org/Zones/
WeeklyMaster.pdf (accessed on 18 June 2024).

6. Wang, T.; Mei, X.; Thomasson, J.A.; Han, X.; Yadav, PK. GIS-based volunteer cotton habitat prediction and plant-level detection
with UAV remote sensing. Comput. Electron. Agric. 2022, 193, 106629. [CrossRef]

7. Yadav, PK.; Thomasson, J.A.; Searcy, S.W.; Hardin, R.G.; Braga-Neto, U.; Popescu, S.C.; Martin, D.E.; Rodriguez, R.; Meza, K,;
Enciso, J.; et al. Assessing the performance of YOLOVS5 algorithm for detecting volunteer cotton plants in corn fields at three
different growth stages. Artif. Intell. Agric. 2022, 6, 292-303. [CrossRef]

8. FMC Corporation. “FYFANON ULV AG,” FYFANON ULV AG. Philadelphia. 2001. Available online: https:/ /www.sciencedirect.
com/science/article/abs/pii/B9780815513810500075?via=ihub (accessed on 18 June 2024).

9. He, K,; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22-29 October 2017; pp. 2961-2969.

10. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [CrossRef]

11. Yadav, PK; Thomasson, J.A.; Hardin, R.G.; Searcy, S.W.; Braga-Neto, U.M.; Popescu, 5.C.; Martin, D.E.; Rodriguez, R.; Meza, K;
Enciso, J.; et al. Volunteer cotton plant detection in corn field with deep learning. In Autonomous Air and Ground Sensing Systems
for Agricultural Optimization and Phenotyping VII; SPIE: Orlando, Fl, USA, 2022; p. 3. [CrossRef]

12.  Jocher, G.; Changyu, L.; Hogan, A.; Yu, L.; Rai, P; Sullivan, T. YOLOV5, ultralytics/yolov5: Initial Release. Available online:
https://github.com/ultralytics/yolov5/tree /v1.0 (accessed on 20 February 2023).

13.  Kuznetsova, A.; Maleva, T.; Soloviev, V. YOLOV5 versus YOLOV3 for Apple Detection. In Cyber-Physical Systems: Modelling and
Intelligent Control, 338th ed.; Kravets, A.G., Bolshakov, A.A., Shcherbakov, M., Eds.; Springer Nature: Warsaw, Poland, 2021.

14. Sharma, V. Face Mask Detection using YOLOv5 for COVID-19; California State University-San Marcos: San Marcos, CA, USA, 2020.

15.  Zhou, F; Zhao, H.; Nie, Z. Safety Helmet Detection Based on YOLOVS5. In Proceedings of the 2021 IEEE International Conference
on Power Electronics, Computer Applications (ICPECA), Shenyang, China, 22-24 January 2021; pp. 6-11. [CrossRef]

16. Yadav, PK,; Thomasson, J.A.; Hardin, R.; Searcy, S.W.; Braga-Neto, U.; Popescu, S.C.; Rodriguez, R.; Martin, D.E.; Enciso, ].; Meza,
K.; et al. Plastic Contaminant Detection in Aerial Imagery of Cotton Fields Using Deep Learning. Agriculture 2023, 13, 1365.
[CrossRef]

17. Li, G.; Suo, R.; Zhao, G.; Gao, C.; Fu, L.; Shi, F; Dhupia, J.; Li, R.; Cui, Y. Real-time detection of kiwifruit flower and bud
simultaneously in orchard using YOLOvV4 for robotic pollination. Comput. Electron. Agric. 2022, 193, 106641. [CrossRef]

18. Hausamann, D.; Zirnig, W.; Schreier, G.; Strobl, P. Monitoring of gas pipelines—A civil UAV application. Aircr. Eng.
Aerosp. Technol. 2005, 77, 352-360. [CrossRef]

19. Minafik, R.; Langhammer, J.; Hanu$, J. Radiometric and atmospheric corrections of multispectral tMCA Camera for UAV
spectroscopy. Remote Sens. 2019, 11, 2428. [CrossRef]

20. Biday, S.G.; Bhosle, U. Relative Radiometric Correction of Multitemporal Satellite Imagery Using Fourier and Wavelet Transform.

J. Indian Soc. Remote Sens. 2012, 40, 201-213. [CrossRef]


www.sunset.texas.gov
https://doi.org/10.1016/j.compag.2022.107551
https://www.texasagriculture.gov/News-Events/Article/3021/Commissioner-Miller-Announces-Successes-for-Boll-Weevil-Eradication-in-Texas
https://www.texasagriculture.gov/News-Events/Article/3021/Commissioner-Miller-Announces-Successes-for-Boll-Weevil-Eradication-in-Texas
https://www.txbollweevil.org/Zones/WeeklyMaster.pdf
https://www.txbollweevil.org/Zones/WeeklyMaster.pdf
https://doi.org/10.1016/j.compag.2021.106629
https://doi.org/10.1016/j.aiia.2022.11.005
https://www.sciencedirect.com/science/article/abs/pii/B9780815513810500075?via=ihub
https://www.sciencedirect.com/science/article/abs/pii/B9780815513810500075?via=ihub
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1117/12.2623032
https://github.com/ultralytics/yolov5/tree/v1.0
https://doi.org/10.1109/ICPECA51329.2021.9362711
https://doi.org/10.3390/agriculture13071365
https://doi.org/10.1016/j.compag.2021.106641
https://doi.org/10.1108/00022660510617077
https://doi.org/10.3390/rs11202428
https://doi.org/10.1007/s12524-011-0155-6

Remote Sens. 2024, 16, 2754 21 of 22

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.
31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Mamaghani, B.; Salvaggio, C. Multispectral sensor calibration and characterization for sUAS remote sensing. Sensors 2019,
19, 4453. [CrossRef]

Redmon, J.; Sinigardi, S.; Hager, T.; Maaz, M.; Zhang, V.; Alasuutari, J.; Kahn, P.; Ovodov, L.; Veitch-Michaelis, J.; Dujardin, A.;
et al. AlexeyAB/darknet: YOLOvV3. Available online: https://zenodo.org/record /5622675 (accessed on 6 June 2022).

Jocher, G.; Stoken, A.; Borovec, J.; Christopher, S.T.; Laughing, L.C. Ultralytics/yolov5: v4.0-nn.SiLU() activations, Weights &
Biases logging, PyTorch Hub integration. Zenodo 2021. [CrossRef]

Sorma, R.; Wadud, A.; Karim, SSM.R.; Ahamed, F.A.S. Solving Traveling Salesman Problem by Using Genetic Algorithm.
Electr. Electron. Eng. 2020, 10, 27-31. [CrossRef]

Shivgan, R.; Dong, Z. Energy-Efficient Drone Coverage Path Planning using Genetic Algorithm. In Proceedings of the 2020
IEEE 21st International Conference on High Performance Switching and Routing (HPSR), Newark, NJ, USA, 11-14 May 2020.
[CrossRef]

Moon, C.; Kim, J.; Choi, G.; Seo, Y. An efficient genetic algorithm for the traveling salesman problem with precedence constraints.
Eur. J. Oper. Res. 2002, 140, 606—617. [CrossRef]

Dorigo, M.; Birattari, M.; Stutzle, T. Ant Colony Optimization. Stud. Comput. Intell. 2021, 947, 3-8. [CrossRef]

Tridgell, A.; Barker, P. ArduPilot MAVProxy. Available online: https://ardupilot.org/mavproxy/index.html (accessed on
2 March 2022).

Qays, HM.; Jumaa, B.A.; Salman, A.D. Design and Implementation of Autonomous Quadcopter using SITL Simulator. Iraqi J.
Comput. Commun. Control. Syst. Eng. 2020, 1-16. [CrossRef]

Meier, L. MAVLink Developer Guide. Available online: https://mavlink.io/en/ (accessed on 19 May 2021).

USDA-Natural Resources Conservation Service, “Web Soil Survey”. Available online: https://websoilsurvey.sc.egov.usda.gov/
App/HomePage.htm (accessed on 19 July 2021).

NVIDIA. Jetson TX2 Module. Available online: https://developer.nvidia.com/embedded/jetson-tx2 (accessed on
19 September 2021).

MicaSense Incorporated. MicaSense RedEdge and Altum Image Processing Tutorials. Available online: https://github.com/
micasense/imageprocessing (accessed on 14 October 2021).

Allebach, ].P. Optimal unsharp mask for image sharpening and noise removal. J. Electron. Imaging 2005, 14, 023005. [CrossRef]
Guo, H.; He, H.; Chen, M. Gamma correction for digital fringe projection profilometry. Appl. Opt. 2004, 43, 2906-2914. [CrossRef]
[PubMed]

Ju, M.; Ding, C.; Zhang, D.; Guo, Y.J. Gamma-correction-based visibility restoration for single hazy images. IEEE Signal
Process. Lett. 2018, 25, 1084-1088. [CrossRef]

Xu, G,; Su, J.; Pan, H.; Zhang, Z.; Gong, H. An image enhancement method based on gamma correction. In Proceedings of
the 2009 Second International Symposium on Computational Intelligence and Design, Changsha, China, 12-14 December 2009;
pp. 60-63. [CrossRef]

Jocher, G.; Stoken, A.; Borovec, J.; Chaurasia, A.; Liu, C.; Hajek, J.; Diaconu, L.; Defretin, Y.; Lohia, A.; Milanko, B.; et al.
ultralytics/yolov5: v5.0-YOLOvV5-P6 1280 Models, AWS, Supervise.ly and YouTube Integrations. Available online: https:
/ /zenodo.org/record /4679653 (accessed on 21 July 2021).

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 740-755. [CrossRef]

Yan, B.; Fan, P; Lei, X,; Liu, Z; Yang, F. A real-time apple targets detection method for picking robot based on improved YOLOV5.
Remote. Sens. 2021, 13, 1619. [CrossRef]

Bloice, M.D. Augmentor: Image Augmentation Library in Python for Machine Learning. August 2017. Available online:
https://zenodo.org/records /1041946 (accessed on 5 August 2022).

“State of Texas UTM Zones,” Texas Parks & Wildlife. Available online: https:/ /tpwd.texas.gov/publications/pwdpubs/media/
pwd_mp_e0100_1070ah_08.pdf (accessed on 5 November 2021).

Sun, Y.; Chen, J.; Du, C. Path planning of UAVs based on improved ant colony system. In Proceedings of the 2020 IEEE
International Conference on Progress in Informatics and Computing (PIC), Shanghai, China, 18-20 December 2020; pp. 396—400.
[CrossRef]

Zhang, C.; Zhen, Z.; Wang, D.; Li, M. UAV path planning method based on ant colony optimization. In Proceedings of the 2010
Chinese Control and Decision Conference, CCDC 2010, Xuzhou, China, 26-28 May 2010; pp. 3790-3792. [CrossRef]
Fabien-brulport. Ant Colony Optimisation. Available online: https://github.com/fabien-brulport/ant-colony (accessed on
23 July 2024).

Oborne, M. ArduPilot Mission Planner. Available online: https://github.com/ArduPilot/MissionPlanner (accessed on
23 July 2024).

Koubaa, A.; Allouch, A.; Alajlan, M.; Javed, Y.; Belghith, A.; Khalgui, M. Micro Air Vehicle Link (MAVlink) in a Nutshell: A
Survey. IEEE Access 2019, 7, 87658-87680. [CrossRef]

Zhang, H.; Lan, Y.; Suh, C.P,; Westbrook, ].K.; Lacey, R.; Hoffmann, W.C. Differentiation of Cotton From Other Crops at Different
Growth Stages Using Spectral Properties and Discriminant Analysis. Trans. ASAB 2012, 55, 1623-1630. [CrossRef]


https://doi.org/10.3390/s19204453
https://zenodo.org/record/5622675
https://doi.org/10.5281/ZENODO.4418161
https://doi.org/10.5923/j.eee.20201002.02
https://doi.org/10.1109/HPSR48589.2020.9098989
https://doi.org/10.1016/S0377-2217(01)00227-2
https://doi.org/10.1007/978-3-030-67380-2_2
https://ardupilot.org/mavproxy/index.html
https://doi.org/10.33103/uot.ijccce.20.1.1
https://mavlink.io/en/
https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
https://developer.nvidia.com/embedded/jetson-tx2
https://github.com/micasense/imageprocessing
https://github.com/micasense/imageprocessing
https://doi.org/10.1117/1.1924510
https://doi.org/10.1364/AO.43.002906
https://www.ncbi.nlm.nih.gov/pubmed/15143816
https://doi.org/10.1109/LSP.2018.2839580
https://doi.org/10.1109/ISCID.2009.22
https://zenodo.org/record/4679653
https://zenodo.org/record/4679653
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.3390/rs13091619
https://zenodo.org/records/1041946
https://tpwd.texas.gov/publications/pwdpubs/media/pwd_mp_e0100_1070ah_08.pdf
https://tpwd.texas.gov/publications/pwdpubs/media/pwd_mp_e0100_1070ah_08.pdf
https://doi.org/10.1109/PIC50277.2020.9350789
https://doi.org/10.1109/CCDC.2010.5498477
https://github.com/fabien-brulport/ant-colony
https://github.com/ArduPilot/MissionPlanner
https://doi.org/10.1109/ACCESS.2019.2924410
https://doi.org/10.13031/2013.42229

Remote Sens. 2024, 16, 2754 22 of 22

49.

50.

51.

52.

53.

54.

55.

56.

57.

Yadav, P; Thomasson, J.A.; Enciso, J.; Samanta, S.; Shrestha, A. Assessment of different image enhancement and classification
techniques in detection of volunteer cotton using UAV remote sensing. In Proceedings of the Autonomous Air and Ground
Sensing Systems for Agricultural Optimization and Phenotyping IV, Baltimore, MD, USA, 15-16 April 2019; Volume 11008,
pp. 152-165. [CrossRef]

Westbrook, J.K.; Eyster, R.S.; Yang, C.; Suh, C.P.C. Airborne multispectral identification of individual cotton plants using
consumer-grade cameras. Remote. Sens. Appl. 2016, 4, 37-43. [CrossRef]

Rumora, L.; Miler, M.; Medak, D. Impact of various atmospheric corrections on sentinel-2 land cover classification accuracy using
machine learning classifiers. ISPRS Int. ]. Geo-Inform. 2020, 9, 227. [CrossRef]

Gan, T,; Zha, Z.; Hu, C,; Jin, Z. Detection of Polyps During Colonoscopy Procedure Using YOLOv5 Network. In Proceedings of
the 3rd International Workshop and Challenge on Computer Vision in Endoscopy (EndoCV2021), Nice, France, 13 April 2021.
Ma, G.; Haibin, D.; Liu, S. Improved Ant Colony Algorithm for Global Optimal Trajectory Planning of UAV under Complex
Environment. Int. . Comput. Sci. Appl. 2007, 4, 57-68.

Bianchi, L.; Dorigo, M.; Gambardella, L.M.; Gutjahr, W.]J. A survey on metaheuristics for stochastic combinatorial optimization.
Nat. Comput. 2009, 8, 239-287. [CrossRef]

Ojha, VK.; Abraham, A.; Snasel, V. ACO for continuous function optimization: A performance analysis. In Proceedings of the
2014 14th International Conference on Intelligent Systems Design and Applications, Okinawa, Japan, 28-30 November 2014;
pp- 145-150. [CrossRef]

Ebadinezhad, S. DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem.
Eng. Appl. Artif. Intell. 2020, 92, 103649. [CrossRef]

Barreto, S. Data Augmentation. Baeldung. Available online: https://www.baeldung.com/cs/ml-data-augmentation#:~:text=
Data%20Augmentation%20on%20Test, %20Validation,also%20use%20it%20during %20testing (accessed on 9 January 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1117/12.2518721
https://doi.org/10.1016/j.rsase.2016.02.002
https://doi.org/10.3390/ijgi9040277
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1109/ISDA.2014.7066253
https://doi.org/10.1016/j.engappai.2020.103649
https://www.baeldung.com/cs/ml-data-augmentation#:~:text=Data%20Augmentation%20on%20Test,%20Validation,also%20use%20it%20during%20testing
https://www.baeldung.com/cs/ml-data-augmentation#:~:text=Data%20Augmentation%20on%20Test,%20Validation,also%20use%20it%20during%20testing

	西北工业大学
	利用无人机遥感数据和点喷应用进行玉米地中棉花的 AI 驱动计算机视觉检测
	2.材料与方法
	2.2.图像数据采集

	2.3.制造商推荐的校正措施
	2.5.图像数据准备

	2.7.边界框坐标转换
	2.8.蚁群算法的最优飞行路径
	2.9.点喷无人机系统仿真
	3.结果
	3.2.蚁群算法用于确定点喷应用的最优飞行路径
	在这种情况下，第一个位置也被视为点喷无人机开始和结束飞行的起始位置。表2的右侧显示了按照蚁群算法确
	一旦通过蚁群算法获得最佳飞行路径（表 2），就使用 DroneKit-SITL 按照图 13A-C 

	3.4.农业用太阳能无人机上的点喷任务
	4.讨论
	4.2.蚁群算法在最佳飞行路径和点喷中的应用
	5.结论与未来工作
	5.2.局限性与未来工作

	Introduction 
	Materials and Methods 
	Experiment Site 
	Image Data Acquisition 
	Manufacturer Recommended Corrections 
	YOLOv5 
	Image Data Preparation 
	YOLOv5 Training 
	Bounding Box Coordinate Conversion 
	Optimal Flight Path with ACO Algorithm 
	Spot-Spray UAS Simulation 

	Results 
	CV Algorithm with YOLOv5m for Detecting VC Plants in a Corn Field on Radiometrically Corrected Aerial Imagery 
	ACO Algorithm to Determine Optimal Flight Path for Spot-Spray Applications 
	Spot-Spray UAS Simulation on Mavproxy and Mission Planner Based on the Optimal Flight Path Generated by ACO Algorithm 
	Spot-Spray Mission on Agrosol GCS 

	Discussion 
	VC Detection with YOLOv5m 
	ACO Algorithm for Optimal Flight Path and Spot-Spray 

	Conclusions and Future Work 
	Conclusions 
	Limitations and Future Work 

	References

