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Abstract

Multi-view approach has been proposed to solve occlu-
sion and lack of visibility in crowded scenes. However, the
problem is that too much redundancy information might
bring about false alarm. Although researchers have done
many efforts on how to use the multi-view information to
track people accurately, it is particularly hard to wipe off
the false alarm. Our approach is to use multiple views co-
operatively to detect objects and use objects silhouette on
planes of different height to remove false alarm. To achieve
this we adopt a novel multi-planar homography constraint
to resolve occlusions and false alarm. Experimental results
show that our algorithm is able to accurately locate peo-
ple in crowded scene maintaining correct correspondences
across views. Moreover, the false alarm rate is obviously
reduced.

1 Introduction

Occlusion between people in crowded scenes is very
common. Sometimes, the foreground region belongs to
more than one people. Therefore, it is particularly difficult
to determine which target the foreground region belongs to
even using the color distribution, shape and orientation. Al-
though many studies were done to track people under the
occluded scenes, no algorithm is able to track people ro-
bustly in the case of occlusion. This problem is partially
induced by the information loss in the 2D imaging process.
Reversely, we human beings could track target accurately
even in the case of very severe occlusion. One of the rea-
sons is that we all have two eyes and can locate the people in
3D space. Illuminated by this binocular system, researchers
try and use multiple views of the same scene in an effort to
recover scene information that might be missing in the sin-
gle view. In this paper we propose a multi-view approach
to detecting and tracking people in crowded scenes. The
problem we want to resolve is to accurately locate and track
people even in sever occluded case. Obviously, under this

condition, color distribution and shape information are of
no use. Our method is based on geometrical constructs pro-
posed by S. M. Khan and M. Shah[1]. Core idea is to find
the pixels locating on each plane using a planar constraint.
That is to find people’s section of different height. All these
sections constitute the 3D target distribution. If there is a
target on the ground of a certain position, the corresponding
point in each section image belongs to foreground. Multi-
plying these section figures, we can finally locate targets.
The only requirement for our algorithm is that the targets
and the scene are distinguishable so that we can segment
the foreground approximately. Finally, the location infor-
mation is propagated to each view.

One of preparations in our method is to get the homog-
raphy mappings of different-height plane between different
views. This is easy to achieve in a common multi-camera
system. Only using at least four point pairs, we can cal-
culate the mappings between two views. By this way, we
can map the view without calibration information which is
not easy to get in outdoor scenes. The rest of the paper is
structured as follows. In section 2 we discuss related work.
Section 3 details multi-planar homography constraint. In
section 4 we present our algorithm using the multi-planar
homography constraint to locate people in the overlooking
field. Experimental results are provided in section 5. Fi-
nally, we conclude this paper in section 6.

2 Related work

Multi-view methods are mostly based on monocular
methods, which can’t resolve occlusion in the tracking sys-
tem. In [2] multiple people are tracked with a Kalman filter
in a single camera using 3D shape models of people that
were projected back to image space to aid in segmentation
and resolving occlusions. In [3], multiple people are also
detected and tracked in front of complex backgrounds us-
ing mixture particle filters guided by people models learnt
by boosting. Finally [4] proposes a particle-filtering scheme
with a MCMC optimization which handles naturally en-
trances and departures, and introduces a finer modeling of



interactions between individuals as a product of pair wise
potentials. These and other similar algorithms[5, 6, 7] are
challenged by occluding and partially occluding objects, as
well as appearance changes. Connected foreground regions
may not necessarily correspond to one object, but might
have parts from several of them.

In order to track people in crowded scenes even when
occlusion happens, many researchers have dedicated to
multi-view method. In [8] multiple people are tracked us-
ing ’color’ model constructed from multi-view foreground
color information. J. Berclaz, F. Fleuret, Pascal Fua[9, 10]
use a probabilistic occupancy map to depict the probability
of target existing in the space position. This method is not
sensitive to foreground detection result. However, calibra-
tion information is required, which restricts the application
of this method. What’s more, one of the difficult problems
is the false alarm due to redundancy information of multi
view. Especially when the targets are more than the cam-
eras, false alarm is serious. In [11], a multi-view method
without foreground segmentation is presented. This method
is based on the assumption that the foreground area belong-
ing to the same target in different view is consistent in color
distribution. Obviously, this assumption is not usually cor-
rectly. RecentlySaad M. Khan and Mubarak Shah[1] pro-
posed a multi-view approach to tracking people in crowded
scenes using a planar homography constraint. Although this
method requires no calibration information, it is sensitive
to the foreground segmentation result. Moreover, the less
cameras, the higher false alarm rate the algorithm brings
about.

Even though these methods attempt to resolve occlu-
sions, problems like false alarm are brought about. Our
method tracks multiple people in crowded scene basing on
multi-planar constraint with low false alarm rate and low
requirement for foreground segmentation accuracy and no
calibration information.

3 Multi-planar Homography Constraint

The planar constraint proposed in [1] is described as fol-
lows.

Let p = (x, y, 1) denote the image location (in homo-
geneous coordinates) of a 3D scene point in one view and
let p = (x′, y′, 1) be its coordinates in another view. Let
H denote the homography of the plane

∏
between the two

views and H3 be the third row of H . When the first image
is warped toward the second image using the homography
H , then the point p will move to pw in the warped image:

pw = (xw, yw, 1) =
Hp

H3p
(1)

For 3D points on the plane
∏

, pw = p′. For 3D points
off

∏
, pw 6== p′. The misalignment pw − p′is called

the plane parallax. Geometrically speaking warping pixel
p from the first image to the second using the homogra-
phy H amounts to projecting a ray from the camera center
through pixel and extending it till it intersects the plane

∏
at the point often referred to as the ’piercing point’ of pixel
p with respect to plane

∏
. The ray is then projected from

the piercing point onto the second camera. The point in the
image plane of the second camera that the ray intersects is
pw. In effect pw is where the image of the piercing point is
formed in the second camera. As can be seen in figure 1,
3D points on the ground plane have no plane-parallax while
those off the plane have considerable plane-parallax.

Figure 1 Mapping between two views

Figure 1 shows a person standing on the ground. The
scene is being viewed by two cameras. is the homogra-
phy of the plane ground from view 1 to view 2. Warping
a pixel from view 1 with amounts to projecting a ray on to
the ground plane at the piercing point and extending it to
the second camera. Pixels that are image locations of scene
points off the plane have plane parallax when warped. This
can be observed for the blue ray in the figure.

Suppose a scene containing a ground plane is being
viewed by a set of wide-baseline stationary cameras. The
background models in each view are available and when an
object appears in the scene it can be detected as foreground
in each view using background difference. Any 3D point
lying inside the foreground object in the scene will be pro-
jected to a foreground pixel in every view. The same is the
case for 3D points inside the object that lie on the ground
plane, except however that the projected image locations in
each view will be related by homographies of the ground
plane. Now we can state the following proposition.

Proposition 1. Let φ be the set of all pixels in a reference
view and let Hi be the homography of plane

∏
in the scene

from the reference view to view i. If ∃p ∈ φ such that the
piercing point of p with respect to

∏
lies inside the volume

of a foreground object in the scene then ∀i, p′i 3 ψi where
p′i = Hip and ψi is the foreground region in view.



Figure 2 The first row shows people viewed by a set of cameras.
The second row shows the foreground detected in each view.

However, false alarm might occurs by only using ground
plane when some foreground pixels belonging to one peo-
ple mapping with foreground pixels belonging to another
people. What’s more, if the feet in some view are not seg-
mented completely, targets might be undetected. To resolve
these, we propose a multi-planar constraint on the basis of
proposition 1. Our proposition is described as follows.

Proposition 2. Let plane
∏

j be the jth plane of all
planes. Let φj be the set of all pixels that are foreground
pixels in a reference view on

∏
j(according to Proposi-

tion1). A true target in the space should have foreground
pixels on each plane

∏
j .

By this proposition, more stereo information is known
about an object and more constraints are used so that we
can eliminate false alarm effectively and lower undetected
rate could be achieved due to the multi-planar information.

Figure 3 This figure illustrates Proposition 2.

A true person in the space should have section image on
all the planes from ground plane to the head plane. If there
is a false alarm in space, it might not have silhouette on all
the planes. According to this principle, we can eliminate
the false alarm. Besides, undetected rate can be reduced
for we can get more information than only the feet on the
ground plane. If foreground is not segmented completely,
especially when one’s feet are undetected, then the person
would be undetected when only using ground planar con-
straint.

4 Using the Multi-planar Homography Con-
straint to Locate People

Our algorithm for locating people is easy to understand.
First, we segment the foreground area using Gaussian mix-
ture model-based background suppression[12] in each view.
Then, on each plane of different height, the foreground pix-
els in all the other views are warped to the reference view
and the warped results are multiplied to produce a section
map. Finally, all these section maps are mapping to the
overlooking scene and multiplied to locate people and wipe
off the false alarm. The results would be propagated to each
view.

Our algorithm is shown in Fig. 4. As we can see, it
contains four key steps. The first step is to calculate the
mapping homography between different views and between
each view and the overlooking view. The second step is to
obtain the section view on each plane. The next step is to
combine all the section images on different planes to get the
final object occupancy probabilistic field. Finally, we back
propagate the result to each view.

The first key point is how to get the section image on a
plane using four warped foreground images. Let’s suppose
we have n cameras and the mapping parameters θ between
views are known. Under this suppose we can believe that
different view images are independent of each other since
the cameras do not have to do with each other. Let ei de-
note the point i in space and Ik denote the foreground image
of view k. then we can have formula (2).

p(ei = 1|I, θ) = p(I|ei=1,θ)p(ei=1|θ)
p(I|θ)

=
n∏

k=1

p(Ik|ei = 1, θ) p(ei=1|θ)
n∏

k=1

p(Ik|θ)

= p(ei=1|θ)
n∏

k=1

p(Ik|θ)

n∏
k=1

p(ei=1|Ik,θ)p(Ik|θ)
p(ei=1|θ)

= 1
(p(ei=1|θ))n−1

n∏
k=1

p(ei = 1|Ik, θ)

(2)

In formula (2), (p(ei = 1|θ))n−1 is only dependent on
the mapping parameter . So we can obtain the inference that

p(ei = 1|V ) ∝
n∏

k=1

p(ei = 1|Ik, θ) (3)

According to formula (3), we can calculate the probabil-
ity of a point being a foreground point in space by formula
(4).

p(ei = 1|V ) =
n∏

k=1

p(ei = 1|Ik, θ) =
{

1 ∀k, Ik(i) = 1
0 else

(4)



In this way, we get the section image on a plane by cal-
culating the probability map using formula (4).

The second key point is how to get the final object occu-
pancy probabilistic field using the section images on each
plane. Let N denote the plane number and S denote the
section images on all planes. As we all know, the more
cameras we have, the more accurate we can locate target
in the scene and the more effective we can wipe off false
alarms. The reason is that more cameras bring in more con-

straint to target so that we can get accurate target position.
Our multi-planar constraint is exactly similar to multi cam-
eras in this sense. So we combine the section images on
different planes using formula (5).

p(ei = 1|V ) =
N∏

k=1

p(ei = 1|Sk, θ) =
{

1 ∀k, Sk(i) = 1
0 else

(5)
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Figure 4 This figure shows how our method works in the actual scene. On the top row are the four views captured by four stationary
cameras and the second row is foreground regions obtained using background suppression based on mixing gauss model. First four columns
of the third row are the warped result of head plane. The fifth column is the head silhouette on the head plane and the sixth column shows
the silhouette mapping to the overlooking view. The following rows are the result on the middle plane and the ground plane. The binary
image on the right bottom is the final result using multi-planar constraint. The detecting result is finally back propagated to the reference
view as in the image on the top right of Fig. 4.

Obviously, false alarm can be eliminated using the multi-
planar constraint by formula (5). However, it often happens
that foreground regions are not segmented completely and
the section image is not accurate. Under this condition, true
targets might be missed. Since we have information on dif-
ferent planes, we now consider use the multi-plane informa-
tion complementary to reduce undetected rate.

Suppose we have Ni planes. We can calculate a prob-
ability map by formula (5). The bigger Ni is, the more
authentic is the probability map. By changing Ni from 1
to N , we can get N probability maps. To make full use of

the N probability maps, we sum them use different weights
wNi(wNi > wNi−1), as in formula (6).

p(ei = 1|V ) =
N∑

Ni=1

wNi

Ni∏

k=1

p(ei = 1|Sk, θ) (6)

By connection analysis and local maximum, targets are
finally located. In this way, we can eliminate false alarm
and reduce undetected rate by our multi-planar constraint.
Table 1 shows the whole algorithm processes.



Tabel 1 Algorithm processes 

In the four views, choose view 0 as the reference view.

Calculate each mapping jh between the overlooking view and the view 0 on plane j

Calculate homography
ij

H between the reference view and view i on plane
j

for each frame

segment foreground regions using Gaussian mixture model-based background suppression

for each plane
j

for each camera view i

warp the foreground result to the reference view using homography
ij

H

end

Combine the warped results to get the section image on plane
j

using formula (4) 

mapping the section image to the overlooking view using 
j

h to get the object occupancy

probabilistic field

end

Combine object occupancy probabilistic field on all planes to get the final target location by formula (6)

Locate target by connection analysis and local maximum

Back propagate the result to each view

end

5 Experimental Results

We conducted several experiments on the basis of actual
data and compared the results of our algorithm with the re-
sults of the algorithm using the one planar constraint. The
configuration of the computer used for experiments is CPU
Intel(R) Core(TM) 2 Duo 2.66GHz, RAM 2.0 G. Our exper-
imental site is indoor space about 10mx10m and we have 4
cameras in the scene.

To evaluate our method,we conducted several experi-
ments with varying number of people and cameras in the
scene. Our purpose is to confirm that using the multi-planar
constraint amounts to increasing the number of cameras.
That is to say, we can detect much more people than just the
number of cameras even in crowded scene, which is impos-
sible for traditional multi-camera detecting methods. We
compare our method’s results with the traditional methods’.
Part of the experiment result is displayed as follows.

Figure 5 This figure shows the comparisons of our method and the traditional method using two cameras. The first three columns are the
detection results of frame 10,150,220 and the last three columns are the detection results of overlooking view by our method. The third
and fourth columns are results by the traditional method using a planar constraint.



Figure 6 This figure shows the comparisons of our method and the traditional method using three cameras. The first four columns are the
detection results of frame 140,220,300 and the last four columns show the detection result of overlooking view by our method. The third
and fourth columns are results by the traditional method using a planar constraint.

From Fig. 5 and Fig.6 we can see both our method
and the traditional method could resolve occlusion even in
crowded scene. However, many false alarms occur due to
too few constraints when there are more targets than cam-
eras in traditional method. Usually, cameras need to be in-
creased to increase the constraint to targets so that the false
alarm could be wiped off. Here, we adopt a multi-planar
constraint to replace increasing cameras. In this way, we
can use the fewest cameras, even only two, to detect al-
most all the people (up to 6 people) with few false alarms in
our 10mx10m scene. To confirm our method is more effec-
tive to wipe off false alarm and reduce undetected rate, we
obtain the error rate (ErrRate) using statistical analysis.
False alarm rate is calculated as formula (7).

ErrRate =
falsealarmnumber + undetectednumber

truetargetnumber
(7)

Figure 7 This figure shows the false alarm per frame of our
method and the traditional method with different number of people
in the scene.

Fig.7. shows the false alarm rate (statistic result from
1000 frames) of our method and the traditional method.We
can see that our method can wipe off false alarm effectively
even there are many targets in the scene compared with the
traditional method by Fig.7. Besides, it is obvious that the
traditional method could not work well if there are too few
cameras. Our method is not sensitive to camera numbers

for it could performance well even using only two cameras.

6 Conclusion

We propose a novel multi-camera method to detect peo-
ple in crowded scene. The major contribution of our work
is elimination of false alarm using a multi-planar constraint
instead of the increasing cameras. For the plane of a height,
we combine the foreground image from all views into a ref-
erence view to get the target section on the plane using a
planar constraint. Using our multi-planar constraint, we
mapping the section image on all planes to the overlooking
view and combine them to get the final overlooking view.
The last step is to locate people by simply clustering the
overlooking map. In the future, we plan to do research on
tracking people in the overlooking view as some people are
too close to distinguish.
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